提出一种基于局部特征的双空间金字塔匹配核(bi-space pyramid match kernel,BSPM)用于图像目标分类.利用局部特征在特征空间和图像空间建立统一的多分辨率框架,以便较好地表达图像的语义内容.该方法同时在特征空间和图像空间建立金字...提出一种基于局部特征的双空间金字塔匹配核(bi-space pyramid match kernel,BSPM)用于图像目标分类.利用局部特征在特征空间和图像空间建立统一的多分辨率框架,以便较好地表达图像的语义内容.该方法同时在特征空间和图像空间建立金字塔型结构,通过适当匹配可以得到正定核函数,该函数具有线性计算复杂度,可以运用于基于核的学习算法.将BSPM嵌入支持向量机对公共数据库中图像目标进行分类,实验结果表明该方法对图像具有良好的分类能力,优于词汇导向的金字塔匹配核和空间金字塔匹配核.展开更多
为了提高基于油中溶解气体分析(dissolved gas analysis,DGA)的变压器故障诊断正确率,弥补单子空间特征提取的局限性,提出了基于双子空间特征提取的变压器故障分层诊断模型.首先,将DGA测试样本在一个子空间内进行特征提取后,为避免核函...为了提高基于油中溶解气体分析(dissolved gas analysis,DGA)的变压器故障诊断正确率,弥补单子空间特征提取的局限性,提出了基于双子空间特征提取的变压器故障分层诊断模型.首先,将DGA测试样本在一个子空间内进行特征提取后,为避免核函数及其参数的选择难题,以及利用多核支持向量机(multiple-kernel support vector machine,MKSVM)鲁棒性强和精度高的特点,采用MKSVM作为分类器对测试样本进行预测.依据预测结果将测试样本分为难分类和易分类样本,对易分类样本直接进行分类识别;对难分类样本则将该样本再次投影到另一子空间进行特征提取后,同样采用MKSVM作为分类器对难分类样本进行预测,综合两次预测结果进行分类识别,实现两分类MKSVM的双子空间特征提取算法.最后,根据故障特征,建立基于双子空间特征提取算法的变压器故障分层诊断模型.诊断实例表明,该模型具有较高的诊断正确率和推广能力.展开更多
文摘提出一种基于局部特征的双空间金字塔匹配核(bi-space pyramid match kernel,BSPM)用于图像目标分类.利用局部特征在特征空间和图像空间建立统一的多分辨率框架,以便较好地表达图像的语义内容.该方法同时在特征空间和图像空间建立金字塔型结构,通过适当匹配可以得到正定核函数,该函数具有线性计算复杂度,可以运用于基于核的学习算法.将BSPM嵌入支持向量机对公共数据库中图像目标进行分类,实验结果表明该方法对图像具有良好的分类能力,优于词汇导向的金字塔匹配核和空间金字塔匹配核.
文摘为了提高基于油中溶解气体分析(dissolved gas analysis,DGA)的变压器故障诊断正确率,弥补单子空间特征提取的局限性,提出了基于双子空间特征提取的变压器故障分层诊断模型.首先,将DGA测试样本在一个子空间内进行特征提取后,为避免核函数及其参数的选择难题,以及利用多核支持向量机(multiple-kernel support vector machine,MKSVM)鲁棒性强和精度高的特点,采用MKSVM作为分类器对测试样本进行预测.依据预测结果将测试样本分为难分类和易分类样本,对易分类样本直接进行分类识别;对难分类样本则将该样本再次投影到另一子空间进行特征提取后,同样采用MKSVM作为分类器对难分类样本进行预测,综合两次预测结果进行分类识别,实现两分类MKSVM的双子空间特征提取算法.最后,根据故障特征,建立基于双子空间特征提取算法的变压器故障分层诊断模型.诊断实例表明,该模型具有较高的诊断正确率和推广能力.