期刊文献+
共找到1,569篇文章
< 1 2 79 >
每页显示 20 50 100
基于双线性卷积神经网络模型的阿尔茨海默病自动诊断 被引量:1
1
作者 曾雷雷 杨帆 +3 位作者 雷平贵 缪月红 谢弘 叶远浓 《贵州医科大学学报》 CAS 2022年第2期217-223,共7页
目的探讨基于双线性卷积神经网络(BRNV)模型的阿尔茨海默病(AD)自动诊断。方法选取AD神经成像倡议(ADNI)数据库中的AD(n=93)、轻度认知功能障碍(MCI,n=76)及正常认知(NC,n=100)受试者的核磁共振图像(MRI)作为数据集,预处理后按照8∶2的... 目的探讨基于双线性卷积神经网络(BRNV)模型的阿尔茨海默病(AD)自动诊断。方法选取AD神经成像倡议(ADNI)数据库中的AD(n=93)、轻度认知功能障碍(MCI,n=76)及正常认知(NC,n=100)受试者的核磁共振图像(MRI)作为数据集,预处理后按照8∶2的比例分为训练集和验证集,同时另取ADNI中不同于以上已经选取的受试者数据150例作为测试集(AD、MCI及NC受试者各50例),将每名受试者经过预处理后的三维MRI数据转换为矢状面、冠状面及横断面2 D切片123张,最终获得AD组MCI组及NC组受试者训练集(n=9225、7503、9840)、验证集(n=2214、1845、2460)及测试集(n=6150、6150、6150)2 D切片;设计BRNV模型对预处理后的MRI数据进行分类预测,采用迁移学习方法为模型寻找最优的初始网络参数权重,通过BRNV模型对AD的分类效果绘制受试者工作特征曲线(ROC),以ROC曲线下面积(AUC)、准确率、特异性及敏感性评估模型的诊断价值。结果BRNV模型对AD受试者诊断分类,准确率、AUC、特异性及敏感性分别达85.4%、91.3%、86.1%及84.2%;BRNV模型对MCI受试者诊断分类,准确率、AUC、特异性及敏感性分别达73.3%、75.1%、72.0%及74.0%。结论BRNV模型在AD自动诊断中具有较高的准确率,有助于针对AD的计算机辅助诊断系统开发,并帮助医生提高AD的诊断效率。 展开更多
关键词 阿尔茨海默病 诊断 计算机辅助 双线性卷积神经网络 磁共振图像 迁移学习 图像分类
下载PDF
基于双输入输出卷积神经网络代理模型的油藏自动历史拟合研究
2
作者 陈旭 张凯 +3 位作者 刘晨 张金鼎 张黎明 姚军 《油气地质与采收率》 CAS CSCD 北大核心 2024年第3期165-177,共13页
传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确... 传统油藏自动历史拟合方法需进行多次计算耗时的油藏数值模拟,而深度学习代理模型可以实现高效且精度近似的油藏数值模拟替代计算。在基于深度学习代理模型的油藏自动历史拟合方法中,通常将采用油藏自动历史拟合方法进行调整的油藏不确定性参数作为深度学习代理模型的输入参数。现有的深度学习代理模型常为单一输入输出的神经网络模型架构,并未考虑油藏自动历史拟合方法需要对多个油藏不确定性参数进行调整,且需要训练多个深度学习代理模型以实现对油藏含水饱和度场分布及压力场分布的预测。为此,提出了一种基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法,将油藏渗透率场分布及相对渗透率参数作为输入,使用双输入输出卷积神经网络同时对油藏含水饱和度场分布及压力场分布进行预测,利用Peaceman方程计算产量,并耦合到多重数据同化集合平滑器(ES-MDA)方法中,对油藏渗透率场分布及相对渗透率参数进行反演更新,实现较为高效的油藏自动历史拟合求解。研究结果表明:双输入输出卷积神经网络代理模型在指定时间步的油藏含水饱和度场分布、压力场分布的预测精度均为93%以上。相较于传统油藏自动历史拟合方法,基于双输入输出卷积神经网络代理模型的油藏自动历史拟合方法避免了多次调用油藏数值模拟器的计算耗时问题,提高了拟合效率。 展开更多
关键词 油藏自动历史拟合 油藏数值模拟 深度学习 代理模型 双输入输出卷积神经网络
下载PDF
并联卷积神经网络的近红外光谱定量分析模型
3
作者 于水 宦克为 +1 位作者 刘小溪 王磊 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1627-1635,共9页
近红外光谱分析已成为工农业生产过程质量监控领域中不可或缺的重要分析手段之一,在食品、农业、医药等定性定量分析领域被广泛应用。预测精度高、运行速度快、泛化能力强的近红外光谱预测模型可用于不同物质的定性定量分析。但由于近... 近红外光谱分析已成为工农业生产过程质量监控领域中不可或缺的重要分析手段之一,在食品、农业、医药等定性定量分析领域被广泛应用。预测精度高、运行速度快、泛化能力强的近红外光谱预测模型可用于不同物质的定性定量分析。但由于近红外光谱数据量的激增,传统的近红外光谱建模方法已经出现明显的不足。随着人工智能技术的不断发展,深度学习算法在近红外光谱分析领域得到了广泛应用。提出了一种基于并联卷积神经网络的近红外光谱定量分析模型(PaBATunNet)。该模型由1个一维卷积层、1个并联卷积模块(Module)、1个展平层、4个全连接层和1个参数调节器(PR)组成,Module模块包括5个子模块分别对光谱数据进行线性及非线性多维特征提取,并通过Concatenate函数将提取后的光谱特征数据进行拼接,PR模块通过调节优化PaBATunNet模型参数,提高模型预测精度。基于Gard-CAM思想给出了PaBATunNet模型高贡献度特征波长,增加了PaBATunNet模型的可解释性。以谷物、柴油、啤酒、牛奶四组公开的近红外光谱数据为例,将PaBATunNet模型的预测结果与偏最小二乘(PLS)、主成分回归(PCR)、支持向量机(SVM)和BP神经网络(BP)模型的预测结果进行比较。结果表明,与PLS相比,PaBATunNet模型在谷物、柴油、啤酒、牛奶数据集的预测精度上分别提高了30.0%、40.7%、43.0%、52.8%;与PCR相比,PaBATunNet模型的预测精度分别提高了28.8%、35.9%、40.8%、52.2%;与SVM相比,PaBATunNet模型的预测精度分别提高了45.5%、37.4%、45.3%、54.7%;与BP相比,PaBATunNet模型的预测精度分别提高了7.9%、32.4%、90.1%、62.0%。基于并联卷积神经网络的近红外光谱建模方法相比于传统建模方法解决了模型预测精度低、运行时间长、泛化能力差以及可解释性不强等问题,可有效应用于工农业生产中不同物质的定量分析,为建立快速、无损、高精度的近红外光谱定量分析模型提供了科学基础。 展开更多
关键词 近红外光谱 深度学习 并联卷积神经网络 定量分析 预测模型
下载PDF
一种基于一维卷积神经网络的试井模型智能识别方法
4
作者 齐占奎 张新鹏 +2 位作者 刘旭亮 查文舒 李道伦 《油气井测试》 2024年第2期72-78,共7页
为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经... 为提高试井分析工作效率,实现试井模型的自动识别,提出了基于一维卷积神经网络(1D CNN)的试井模型智能识别方法。根据实测数据的特点,提出基于理论曲线构建样本库的原则与方法,并构建了4种常用油藏模型的训练样本库;建立了一维卷积神经网络模型,将样本库中双对数曲线的压力变化和压力导数数据作为输入,油藏类别作为网络输出训练及优化网络,总识别准确率可达99.16%,敏感度均在98%以上。经4口井实例应用,正确识别试井模型的概率大于0.99,与二维卷积神经网络相比,1D CNN显著降低了计算复杂度和时间成本,加快了训练速度。这表明基于试井理论所构建的样本库是有效的,能满足实测数据模型识别的需求;同时证明了方法的有效性、实用性和普适性。 展开更多
关键词 试井模型 一维卷积神经网络 智能识别 深度学习 自动解释 模型识别 样本库
下载PDF
基于卷积神经网络的福建省区域滑坡灾害预警模型 被引量:1
5
作者 董力豪 刘艳辉 +1 位作者 黄俊宝 刘海宁 《水文地质工程地质》 CSCD 北大核心 2024年第1期145-153,共9页
福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的... 福建省滑坡灾害频发,开展区域尺度上的滑坡灾害预警是防灾减灾的重要手段,但由于滑坡成灾机理复杂,传统的区域滑坡预警方法存在精度不足等问题。深度学习是指通过构建神经网络模型进行特征的提取、抽象、表示与学习的技术,是机器学习的一种。卷积神经网络作为一种经典的深度学习算法,具有比传统机器学习更强大的分类能力与表征能力。文章以福建省为研究区,将卷积神经网络引入滑坡灾害预警领域,构建福建省区域滑坡预警模型,过程及结果如下:(1)采用SMOTE优化算法对2010—2018年福建省滑坡灾害样本库进行优化,扩充正样本的个数,将正负样本比例从1∶3.4扩充到1∶2,样本总量达到18040个;(2)构建卷积神经网络模型结构,模型结构包括一个输入层、两个卷积层、两个最大池化层和一个全连接层以及一个输出层;(3)使用卷积神经网络对优化后的样本(2010—2018年样本的80%作为训练集)进行训练,并用贝叶斯优化算法优化模型超参数,得到福建省区域滑坡预警模型;(4)以2010—2018年样本的20%作为测试集对模型进行测试,采用混淆矩阵、ROC曲线进行模型测试,结果显示模型准确度为0.96~0.97,AUC值达到0.977,模型精度与泛化能力良好;(5)以2019年汛期滑坡灾害实况作为正样本,通过时空采样的方法采集负样本,构建2019年区域滑坡样本校验集(样本数603个),对模型进行进一步实况校验,采用混淆矩阵、ROC曲线进行模型校验,结果显示模型准确度为0.75~0.85,AUC值为0.852。虽然仅用了2019年汛期的滑坡实况样本进行校验,但也达到较好的效果。将卷积神经网络算法应用到区域滑坡预警中,为建立区域滑坡预警模型提供了一种新的途径,初步校验表明,模型效果良好,今后将在福建省对模型进行进一步的应用与校验。 展开更多
关键词 滑坡灾害 预警模型 深度学习 卷积神经网络 模型构建
下载PDF
高效通道注意力结合卷积神经网络的近红外光谱分析模型研究
6
作者 王妞 宦克为 +2 位作者 傅钲淇 刘赋伟 王迪 《长春理工大学学报(自然科学版)》 2024年第1期16-22,共7页
近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光... 近红外光谱分析技术有无损、高效的特点,在各领域都有广泛应用。但传统分析模型在面对近红外光谱数据量激增时往往出现预测精度不高、泛化能力差等问题。为此,提出一种基于卷积神经网络(CNN)与高效通道注意力(ECA)模块相结合的近红外光谱分析模型(CNNECANet),该模型由8个一维卷积层、1个ECA模块、4个最大池化层、1个展平层、2个全连接层和1个参数优化器组成。ECA模块由1个全局平均池化、1个一维卷积层和1个Sigmoid激活函数组成。以啤酒、牛奶、柴油、谷物的近红外光谱公共数据为例,将CNNECANet与常用建模方法进行比较,CNNECANet比PLS的预测精度分别提高了30.3%、14.1%、29.5%、48.4%;CNNECANet比SVR的预测精度分别提高了33.5%、17.6%、39.0%、50.0%;CNNECANet比BP神经网络模型的预测精度分别提高了80.0%、29.0%、7.2%、42.7%。该模型具有更好的预测精度和鲁棒性,解决了传统近红外光谱建模算法容易出现过拟合、模型泛化性差等问题。 展开更多
关键词 近红外光谱 卷积神经网络 高效通道注意力 预测模型
下载PDF
基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值
7
作者 孙伟 史航 +1 位作者 黄臻 法良玲 《川北医学院学报》 CAS 2024年第7期877-881,共5页
目的:探究胃组织病理图像数据集的卷积神经网络(CNN)模型对胃癌(GC)的早期预测价值,开发并验证GC早期预测模型。方法:将154例GC患者按照分期不同分为早期组(n=87)和中晚期组(n=67)。采用Logistic回归分析临床协变量;使用卷积神经网络(C... 目的:探究胃组织病理图像数据集的卷积神经网络(CNN)模型对胃癌(GC)的早期预测价值,开发并验证GC早期预测模型。方法:将154例GC患者按照分期不同分为早期组(n=87)和中晚期组(n=67)。采用Logistic回归分析临床协变量;使用卷积神经网络(CNN)特征提取模型,搭建CNN预测模型;受试者工作特征(ROC)曲线评估区分度,校准曲线评估准确度。结果:年龄、基础疾病、幽门螺旋菌感染、红细胞计数(RBC)、白细胞计数(WBC)是GC的独立危险因素。最佳的CNN特征提取模型为3个卷积层、2个池化层和1个全连接层。CNN的各项指标均优于其他模型;校准曲线分析,CNN模型的拟合效果显著。结论:基于胃组织病理图像数据集的CNN模型具有良好的预测性能,临床可行性较好。 展开更多
关键词 胃癌 胃组织病理图像 卷积神经网络模型 影像组学
下载PDF
基于卷积神经网络的樟子松木材密度近红外预测模型优化
8
作者 刘晓利 李耀翔 +2 位作者 彭润东 张哲宇 陈雅 《森林工程》 北大核心 2024年第3期142-151,共10页
近红外光谱分析技术在木材密度的预测方面具有独特的优势,是一种方便且快速的无损检测技术。卷积神经网络作为经典的深度学习模型之一,能够利用卷积和池化操作提取数据中的特征映射进行学习,与传统的学习模型相比具有更强的模型表达能... 近红外光谱分析技术在木材密度的预测方面具有独特的优势,是一种方便且快速的无损检测技术。卷积神经网络作为经典的深度学习模型之一,能够利用卷积和池化操作提取数据中的特征映射进行学习,与传统的学习模型相比具有更强的模型表达能力。为此将卷积神经网络用于近红外光谱预测木材的气干密度,以樟子松为研究对象,获取样本木材横切面的近红外光谱数据,采用杠杆值与学生化残差t检验(HLSR)法剔除奇异样本,采用SGS+MC+Auto(Savitzky-Golay smoothing+mean centering+autoscaling)对光谱数据进行预处理,通过竞争性自适应重加权算法(competitive adaptive reweighted sampling method,CARS)对特征波长进行提取,构建卷积神经网络模型,预测樟子松的气干密度;并与偏最小二乘回归(partial least squares regression,PLSR)、支持向量机(support vector regression,SVR)和BPNN(backpropagation network)神经网络的预测结果进行对比。结果表明,当校正集比例小于0.65时,模型预测结果略低于PLSR模型。但当校正集比例大于0.7时,卷积神经网络(convolution neural network,CNN)模型的预测精度优于其他模型,且随着训练样本比例的增加,模型的性能和稳定性也随之提升。研究表明CNN可以显著提高近红外预测木材气干密度的模型精度,实现基于近红外技术的木材密度有效预测。为木材气干密度无损检测提供了理论基础和科学依据。 展开更多
关键词 木材气干密度 近红外光谱 卷积神经网络 樟子松:预测模型
下载PDF
基于卷积神经网络的网络入侵检测模型设计
9
作者 陆俊杰 《信息记录材料》 2024年第7期163-165,168,共4页
基于卷积神经网络构建一种网络入侵检测模型,分析网络入侵检测系统的基本原理,设计模型结构和各模块,并进行模型实现及测试。在数据预处理、模型参数设置、训练和测试过程中取得了良好效果,为网络安全领域提供了新的解决方案。
关键词 卷积神经网络 网络入侵检测 模型构建
下载PDF
基于卷积神经网络的工控网络入侵检测模型
10
作者 胡艳 《长沙大学学报》 2024年第2期29-34,共6页
为了有效检测出工控网络的入侵行为,保证工控网络的运行安全,设计了基于卷积神经网络的工控网络入侵检测模型。利用相关设备获取大量的工控网络数据,并对获取的数据进行优化处理,通过计算工控网络数据的分类误差,对其进行分类处理;在此... 为了有效检测出工控网络的入侵行为,保证工控网络的运行安全,设计了基于卷积神经网络的工控网络入侵检测模型。利用相关设备获取大量的工控网络数据,并对获取的数据进行优化处理,通过计算工控网络数据的分类误差,对其进行分类处理;在此基础上,通过设定卷积神经网络的多个参数,提取出多个工控网络数据特征,再计算网络数据特征的特征阈值,并将其与设定的特征阈值进行对比,抓取出其中的工控网络入侵行为特征,由此构建对应的工控网络入侵检测模型,并计算检测模型的检测阈值,提高检测模型的性能,进而完成对工控网络入侵检测模型的设计。实验结果表明,和以往的工控网络入侵检测模型相比,设计的基于卷积神经网络的工控网络入侵检测模型在实际应用中误检率在1%以下。当epoch为100时,查全率为99.88%,F 1分数始终保持在0.9以上。由此表明所设计模型具有良好的检测效果。 展开更多
关键词 卷积神经网络 工控网络 网络入侵 入侵行为检测 检测模型设计
下载PDF
基于卷积神经网络GoogLeNet算法构建颅内动脉瘤诊断模型
11
作者 詹翔 王艺任 +5 位作者 彭艳 张容 向红俐 巩佳利 庞皓文 周平 《西南医科大学学报》 2024年第4期339-344,共6页
目的评价基于卷积神经网络的GoogLeNet算法在颅内动脉瘤自动分类诊断中的应用效果。方法本项研究回顾性收集了2020年1月至2023年1月在西南医科大学附属医院进行头部CT扫描的234例颅内动脉瘤患者和正常对照者的计算机断层扫描血管造影图... 目的评价基于卷积神经网络的GoogLeNet算法在颅内动脉瘤自动分类诊断中的应用效果。方法本项研究回顾性收集了2020年1月至2023年1月在西南医科大学附属医院进行头部CT扫描的234例颅内动脉瘤患者和正常对照者的计算机断层扫描血管造影图像作为研究对象,采用Pytorch框架构建基于GoogLeNet算法的卷积神经网络模型,并使用He初始化方法和Adam优化器进行模型参数初始化和优化,采用交叉熵作为损失函数,并使用批标准化和dropout技术进行模型训练和防止过拟合。结果基于GoogLeNet算法构建的颅内动脉瘤诊断模型在测试集上获得了较高的准确度和较低的损失函数值,受试者工作特征曲线显示训练集的曲线下面积为0.891,测试集为0.851,证明了该模型在颅内动脉瘤诊断中具有很好的应用前景。结论基于卷积神经网络的GoogLeNet算法可以有效地应用于颅内动脉瘤诊断,并且具有较高的准确度和较低的损失函数值,可以为颅内动脉瘤的早期诊断和治疗提供参考依据。 展开更多
关键词 深度学习 卷积神经网络 颅内动脉瘤 诊断模型 人工智能
下载PDF
基于一维卷积神经网络构建医用直线加速器高价值零件故障预测模型的应用效果
12
作者 傅世楣 《医疗装备》 2024年第14期25-27,共3页
目的构建医用直线加速器高价值零件故障预测模型,以实现对高价值零件故障的预判。方法选取2013年1月至2017年12月医院在用医科达Synergy医用直线加速器的60组共381个维修记录数据,按照7:3比例随机分配为训练集(42组)和测试集(18组),采... 目的构建医用直线加速器高价值零件故障预测模型,以实现对高价值零件故障的预判。方法选取2013年1月至2017年12月医院在用医科达Synergy医用直线加速器的60组共381个维修记录数据,按照7:3比例随机分配为训练集(42组)和测试集(18组),采用一维卷积神经网络进行二分类建模,随机选取30组数据作为验证集评估模型性能,并采用测试集数据检测模型预测效果。结果设定最大训练学习次数为120次,实际训练次数超过80次时数据趋于稳定,训练集和验证集的准确率均稳定于90%左右,测试集数据准确率均在96%以上,表明模型收敛较好。结论该模型预测医用直线加速器高价值零件的故障次数与实际情况接近,为预防性维修和保修服务采购提供了可靠的数据支持。 展开更多
关键词 一维卷积神经网络 医用直线加速器 高价值零件 故障预测模型
下载PDF
基于卷积神经网络的入侵昆虫识别研究
13
作者 黄亦其 鹿林飞 +2 位作者 沈豪 王福宽 乔曦 《中国农机化学报》 北大核心 2024年第7期222-227,261,共7页
现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷... 现有昆虫相关识别算法识别种类较少,缺少针对数量庞大种类众多的入侵昆虫分类识别算法,难以为入侵昆虫综合系统的识别功能提供稳定高效的技术支持。该研究对31类入侵昆虫图像进行数据采集,并对图像数据进行处理与数据集划分,基于四种卷积神经网络模型DenseNet121、MobileNetV3、ResNet101和ShuffleNet对其进行训练测试分析讨论。结果表明,在入侵昆虫综合识别系统识别功能后台算法应用上,MobileNetV3表现出更好的综合性能。根据MobileNetV3模型现有缺陷和模型特性,对MobileNetV3模型指定瓶颈层的注意力机制和激活函数进行改进,改进后模型的准确率为92.8%,单张测试集图像的平均识别时间0.012 s,相较于原MobileNetV3模型分别提高0.5%、缩短15.2%,可以很好满足多昆虫识别分类需求。 展开更多
关键词 入侵昆虫 卷积神经网络 模型改进 图像识别
下载PDF
基于卷积神经网络与Transformer的电能质量扰动分类方法
14
作者 金星 周凯翔 +2 位作者 于海洲 王盛慧 伍孟海 《科学技术与工程》 北大核心 2024年第16期6726-6733,共8页
复杂电能质量扰动(power quality disturbances, PQD)的智能分类对于智能电网发展具有重要意义。扰动特征的提取与定位、模式识别与分类是电能质量扰动分类方法研究的难点。采用深度学习算法,将具有关注全局信息的Transformer与善于提... 复杂电能质量扰动(power quality disturbances, PQD)的智能分类对于智能电网发展具有重要意义。扰动特征的提取与定位、模式识别与分类是电能质量扰动分类方法研究的难点。采用深度学习算法,将具有关注全局信息的Transformer与善于提取局部特征的卷积神经网络相融合,提出一种基于卷积神经网络(convolutional neural network, CNN)与Transformer的电能质量扰动分类方法,即CTranCBA。这种双深度学习模型分类方法主要是通过一维卷积神经网络提取电能质量扰动信号特征,利用Transformer自注意力机制引导模型关注序列中不同位置间的依赖关系,实现对扰动信号局部特征与全局特征的互补,克服了因感受野的限制而带来的识别不清、分类不准等问题。使用23种不同电能质量扰动信号,将CTranCBA与Deep-CNN、CNN-LSTM、CNN-CBAM方法进行比较。结果表明:该方法在分类准确率和抗噪性方面表现优异,可为电能质量扰动智能分类提供一种新的方法。 展开更多
关键词 电能质量扰动(PQD) 卷积神经网络(CNN) Transformer模型 卷积注意力机制
下载PDF
卷积神经网络在红枣表面缺陷检测中的应用优化
15
作者 刘奕 《计算机产品与流通》 2024年第3期113-115,共3页
随着农业产业的快速发展,红枣作为重要的经济作物,其品质检测对于提升市场竞争力具有重要意义。本文研究了基于深度学习的红枣表面缺陷检测技术,通过改进卷积神经网络(CNN)模型结构,引入注意力机制和激活函数,有效提高了红枣表面缺陷检... 随着农业产业的快速发展,红枣作为重要的经济作物,其品质检测对于提升市场竞争力具有重要意义。本文研究了基于深度学习的红枣表面缺陷检测技术,通过改进卷积神经网络(CNN)模型结构,引入注意力机制和激活函数,有效提高了红枣表面缺陷检测的准确率和速度。研究结果表明,优化后的模型在红枣表面缺陷识别任务上取得了显著的性能提升,为红枣品质检测提供了一种新的技术手段。 展开更多
关键词 卷积神经网络 注意力机制 表面缺陷检测 深度学习 农业产业 激活函数 品质检测 模型结构
下载PDF
基于卷积神经网络的多偏移干涉相位滤波方法
16
作者 李涵 钟何平 +1 位作者 张鹏 唐劲松 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第6期2043-2050,共8页
为提升干涉信号处理中相位滤波的效果,提出了一种基于卷积神经网络的多偏移干涉相位滤波方法。利用干涉相位噪声模型解释了相位偏移原理,并根据相位偏移原理构建多个卷积神经网络去噪器,利用其分别对不同偏移的干涉相位进行滤波,生成多... 为提升干涉信号处理中相位滤波的效果,提出了一种基于卷积神经网络的多偏移干涉相位滤波方法。利用干涉相位噪声模型解释了相位偏移原理,并根据相位偏移原理构建多个卷积神经网络去噪器,利用其分别对不同偏移的干涉相位进行滤波,生成多个去噪相位。利用神经网络计算像素权值,对多个去噪结果进行融合,进而获得质量更好的相位滤波结果。仿真的数据和真实的数据试验表明,相较于传统方法,所提方法具有更好的细节保持能力,并且所得结果的均方根误差和留数点数量更低。 展开更多
关键词 干涉信号处理 相位滤波 卷积神经网络 噪声模型 干涉相位
下载PDF
基于改进卷积神经网络的苹果叶片病害识别
17
作者 姜月明 王健 +1 位作者 董光辉 胡彭元 《江苏农业科学》 北大核心 2024年第14期214-221,共8页
为了提高真实条件下苹果叶片病害识别准确度和识别速度,提出了一种基于改进的卷积神经网络苹果叶部病害识别方法,该方法是在卷积神经网络VGG16的基础上进行改进完成的。首先针对5类常见苹果叶片病害图片样本集合,采用数字图像处理算法(... 为了提高真实条件下苹果叶片病害识别准确度和识别速度,提出了一种基于改进的卷积神经网络苹果叶部病害识别方法,该方法是在卷积神经网络VGG16的基础上进行改进完成的。首先针对5类常见苹果叶片病害图片样本集合,采用数字图像处理算法(如旋转照片角度、增强降低图像亮度和锐度、添加高斯噪声等)进行数据集增强完成原有数据集的扩充,扩充后获得26377张苹果叶片病害图像,以增加样本多样性,提高模型的泛化能力。通过对叶片病斑特征的差异进行研究,比较了多种高效的卷积神经网络模型架构,最终选出VGG16网络模型作为基础模型,并对其进行改进,通过添加SK模块以及将全连接层改为全局平均池化,提升了模型的识别准确率以及网络稳定性,同时也加快了模型的收敛速度,提升了苹果叶片病害识别速度。试验表明,改进后的VGG16模型识别准确率高达96.17%,相对于VGG16模型提升了3.55百分点。试验结果表明,本研究为苹果叶片病害识别提供了一种可行的高性能解决方案,可有效提升苹果叶片病害的识别准确度和速度,也为深度学习和人工智能技术在农业信息化领域的应用探索了新的途径。 展开更多
关键词 病害识别 卷积神经网络 迁移学习 图像识别 VGG16模型
下载PDF
基于改良U-Net卷积神经网络的复杂地质构造智能识别
18
作者 王善高 杨荣伟 +6 位作者 王登一 马富安 彭铭 刘鎏 石振明 杨沛权 黎超尘 《河南科学》 2024年第2期182-194,共13页
浅地层中的地质异常体给地下工程带来了极大安全隐患,可能导致经济和生命损失.浅层地震法是开展施工场地勘察的一种无损高效的手段.但是地震勘探在浅地层问题中面临着信噪比低、信号衰减强、波场复杂等问题,结果存在多解性和主观性.针... 浅地层中的地质异常体给地下工程带来了极大安全隐患,可能导致经济和生命损失.浅层地震法是开展施工场地勘察的一种无损高效的手段.但是地震勘探在浅地层问题中面临着信噪比低、信号衰减强、波场复杂等问题,结果存在多解性和主观性.针对地震勘探问题,提出了一种改良的卷积神经网络地质速度模型预测模型,提供了一种无需初始速度模型的浅层地质模型反演方案,形成了一套完整的浅层地震勘探信号处理处理流程.在训练样本方面,采用了随机地质模型方法构建多种类地质模型,并形成了地质模型-地震信号数据库.在传统U-Net卷积神经网络上进行了改良,以更好地适应浅地层弹性波叠前信号数据的反演任务.结果表明,神经网络的反演结果直观准确该模型能够精确地预测出地层分界线、褶皱、起伏、断层滑移线等的位置和大小等参数,所采用的SSIM和PSNR两个定量化评价指标均表示,所提出的改良神经网络可以实现高精度反演.预测结果与真实模型相比较,得到的SSIM平均值为0.91,PSNR平均值为39.0.同时该神经网络模型能够向三维问题扩展,能够极大地提高地震信号处理的效率和解译精度. 展开更多
关键词 地震勘探 速度模型反演 卷积神经网络 信号处理
下载PDF
模型误差影响下基于CNN+BiLSTM神经网络的非圆信号目标直接跟踪算法
19
作者 尹洁昕 王鼎 +1 位作者 杨欣 杨宾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1315-1329,共15页
针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算... 针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算法首先利用多运动观测阵列信号各频带间的相关性与辐射源信号的非圆特性,建立模型误差影响下的扩展多站观测矢量;接着利用多个观测时隙内扩展多站观测矢量的信号子空间构造空时特征输入序列;然后设计基于CNN与BiLSTM混合神经网络的直接跟踪模型,通过训练实现对非圆目标的轨迹矢量直接估计.本文算法是从原始数据信号子空间中估计轨迹矢量的直接跟踪模式,相比传统“观测参数估计+滤波轨迹跟踪”的两步估计模式,具有更高的估计精度.由于本文算法在神经网络训练过程中学习到模型误差的信息,因此能够实现对多种误差的校正.仿真结果表明,本文算法较传统两步跟踪算法与现有直接跟踪算法均具有更高的轨迹估计精度,能够明显提升模型误差影响下多站协同跟踪的鲁棒性. 展开更多
关键词 直接跟踪 非圆信号 模型误差 卷积神经网络 双向长短时记忆网络
下载PDF
基于多尺度卷积神经网络的深圳市滑坡易发性评价
20
作者 张清 何毅 +5 位作者 陈学业 高秉海 张立峰 赵占骜 路建刚 张雅蕾 《中国地质灾害与防治学报》 CSCD 2024年第4期146-162,共17页
卷积神经网络(convolutional neural networks,CNN)模型因其强大的特征提取能力被广泛应用于滑坡易发性评估,但传统CNN已难以满足要求。文章提出一种能够顾及深层与浅层特征的多尺度卷积神经网络(multi-scale convolutional neural netw... 卷积神经网络(convolutional neural networks,CNN)模型因其强大的特征提取能力被广泛应用于滑坡易发性评估,但传统CNN已难以满足要求。文章提出一种能够顾及深层与浅层特征的多尺度卷积神经网络(multi-scale convolutional neural networks,MSCNN)模型,通过增加模型深度和样本的感受野,挖掘更深层和更稳定的特征,提高复杂场景下的滑坡易发性评估可靠性。文章以深圳市为研究区,根据系统性原则和代表性原则选取了12个深圳市滑坡影响因子,构建多尺度卷积神经网络滑坡易发性评估模型,并与多层感知器(multilayer perceptron,MLP)、支持向量机(support vector machine,SVM)以及随机森林(random forest,RF)等方法进行对比。结果表明,文章构建的MSCNN模型的AUC值(0.99)较高,优于MLP(0.97)、SVM(0.91)和RF(0.85),证明提出的MSCNN模型具有优异的预测能力;深圳市极高易发性区域面积约为105.3 km^(2),占研究区总面积的4.98%,主要分布在坡体较陡、植被覆盖稀疏和人类工程活动频繁的龙岗区,坡度、地表粗糙度和地表起伏度成为影响深圳市滑坡的主控因子。文章实现的滑坡易发性图反映了深圳市滑坡灾害的分布现状,可为深圳市未来滑坡灾害防治提供数据支持和关键技术支撑。 展开更多
关键词 多尺度卷积神经网络 滑坡易发性评估 机器学习模型 深圳市
下载PDF
上一页 1 2 79 下一页 到第
使用帮助 返回顶部