期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于图卷积和双线性注意力网络的药物靶标亲和力预测
1
作者
程竹平
李建华
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第4期594-601,共8页
药物靶标亲和力预测在药物研发中扮演着重要的角色。针对现有预测方法大多忽略药物分子的二维结构信息、缺乏深层表征融合学习的问题,提出了基于图卷积和双线性注意力网络的药物靶标亲和力预测模型(GBN_DTA)。该模型首先基于多层图卷积...
药物靶标亲和力预测在药物研发中扮演着重要的角色。针对现有预测方法大多忽略药物分子的二维结构信息、缺乏深层表征融合学习的问题,提出了基于图卷积和双线性注意力网络的药物靶标亲和力预测模型(GBN_DTA)。该模型首先基于多层图卷积神经网络编码药物分子图,同时结合1D-CNN和双向长短期记忆网络(BiLSTM)编码靶标序列;然后使用双线性注意力网络融合编码后的药物和靶标特征,最终获得亲和力预测分数。实验结果表明,该模型在DAVIS和KIBA数据集上的性能均优于其他6种主流方法,有效提升了预测准确率。
展开更多
关键词
药物靶标亲和力预测
药物研发
图卷积神经
网络
双线性注意力网络
深层表征融合
下载PDF
职称材料
基于双线性注意力网络的垃圾图像识别与分类方法
2
作者
张旭鹏
魏建兵
《长江信息通信》
2024年第1期109-111,共3页
针对传统图像识别技术应用于垃圾图像的识别及分类中存在的误差较大的问题,文章提出一种基于双线性注意力网络的垃圾图像识别与分类方法。采用二维中值滤波法,对自主拍摄和网络收集而构建的居民生活垃圾图像数据集图像进行去噪处理。应...
针对传统图像识别技术应用于垃圾图像的识别及分类中存在的误差较大的问题,文章提出一种基于双线性注意力网络的垃圾图像识别与分类方法。采用二维中值滤波法,对自主拍摄和网络收集而构建的居民生活垃圾图像数据集图像进行去噪处理。应用多尺度融合方法对去噪后的图像质量进行增强处理,以此完成对垃圾图像的预处理。最后,设计一个双线性注意力网络模型,经过模型训练完成垃圾图像的分类识别。实验结果表明,应用该方法识别并分类居民生活垃圾图像的准确率为96.5%,说明该方法具有较好的有效性与较高的准确性。
展开更多
关键词
双线性注意力网络
垃圾图像
图像识别
垃圾分类
下载PDF
职称材料
题名
基于图卷积和双线性注意力网络的药物靶标亲和力预测
1
作者
程竹平
李建华
机构
华东理工大学信息科学与工程学院
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第4期594-601,共8页
基金
国家重大新药创制项目(2018ZX09735002)。
文摘
药物靶标亲和力预测在药物研发中扮演着重要的角色。针对现有预测方法大多忽略药物分子的二维结构信息、缺乏深层表征融合学习的问题,提出了基于图卷积和双线性注意力网络的药物靶标亲和力预测模型(GBN_DTA)。该模型首先基于多层图卷积神经网络编码药物分子图,同时结合1D-CNN和双向长短期记忆网络(BiLSTM)编码靶标序列;然后使用双线性注意力网络融合编码后的药物和靶标特征,最终获得亲和力预测分数。实验结果表明,该模型在DAVIS和KIBA数据集上的性能均优于其他6种主流方法,有效提升了预测准确率。
关键词
药物靶标亲和力预测
药物研发
图卷积神经
网络
双线性注意力网络
深层表征融合
Keywords
drug target affinity prediction
drug development
graph convolutional neural network
bilinear attention network
deep representation fusion
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
R91 [医药卫生—药学]
下载PDF
职称材料
题名
基于双线性注意力网络的垃圾图像识别与分类方法
2
作者
张旭鹏
魏建兵
机构
甘肃林业职业技术学院
出处
《长江信息通信》
2024年第1期109-111,共3页
基金
2023年甘肃省创新创业教育改革项目“电子信息类专业‘赛、思、专、创’融合平台构建与实践”,编号:2023-14。
文摘
针对传统图像识别技术应用于垃圾图像的识别及分类中存在的误差较大的问题,文章提出一种基于双线性注意力网络的垃圾图像识别与分类方法。采用二维中值滤波法,对自主拍摄和网络收集而构建的居民生活垃圾图像数据集图像进行去噪处理。应用多尺度融合方法对去噪后的图像质量进行增强处理,以此完成对垃圾图像的预处理。最后,设计一个双线性注意力网络模型,经过模型训练完成垃圾图像的分类识别。实验结果表明,应用该方法识别并分类居民生活垃圾图像的准确率为96.5%,说明该方法具有较好的有效性与较高的准确性。
关键词
双线性注意力网络
垃圾图像
图像识别
垃圾分类
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于图卷积和双线性注意力网络的药物靶标亲和力预测
程竹平
李建华
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于双线性注意力网络的垃圾图像识别与分类方法
张旭鹏
魏建兵
《长江信息通信》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部