The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are exami...The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are examined for the twin cylinders. In both cases, the twin cylinders are starting from rest and ultimately moving with the same constant speed through an accelerating process. Assuming that the fluid is inviscid and incompressible and the flow to be irrotational, the integral Laplace equation can be discretized based on the boundary element method. Fully-nonlinear boundary conditions are satisfied on the unknown free surface and the moving body surface. The free surface is traced by a Lagrangian technique. Regriding and remeshing are applied, which is crucial to quality of the numerical results. Single circular cylinder and elliptical cylinder are calculated by linear method and fully nonlinear method for accuracy checking and then fully nonlinear method is conducted on the twin cylinder cases, respectively. The generated wave elevation and the resultant force are analysed to discuss the influence of the gap between the two cylinders as well as the water depth. It is found that no matter the kind of distribution, when the moving cylinders are close to each other, they suffer hydrodynamic force with large absolute value in the direction of motion. The trend of force varying with the increase of gap can be clearly seen from numerical analysis. The vertically distributed twin cylinders seem to attract with each other while the horizontally distributed twin cylinders are opposite when they are close to each other.展开更多
The paper presents the formulation to compute numerically the unsteady aerodynamic forces on the vibrating annular cascade blades.The formulation is based on the finite volume method.By applying the TVD scheme to the ...The paper presents the formulation to compute numerically the unsteady aerodynamic forces on the vibrating annular cascade blades.The formulation is based on the finite volume method.By applying the TVD scheme to the linear unsteady calculations,the precise calculation of the peak of unsteady aerodynamic forces at the shock wave location like the delta function singularity becomes possible without empirical constants.As a further feature of the present paper,results of the present numerical calculation are compared with those of the double linearization theory(DLT),which assumes small unsteady and steady disturbances but the unsteady disturbances are much smaller than the steady disturbances.Since DLT requires far less computational resources than the present numerical calculation,the validation of DLT is quite important from the engineering point of view.Under the conditions of small steady disturbances,a good agreement between these two results is observed,so that the two codes are cross-validated.The comparison also reveals the limitation on the applicability of DLT.展开更多
基金Foundation item: Supported by the Lloyd's Register Foundation, the Fundamental Research Funds for the Central Universities (Gram No. HEUCF140115), the National Natural Science Foundation of China (11102048, 11302057), the Research Funds for State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University (Grant No. 1310), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20132304120028).
文摘The free surface flow generated by twin-cylinders in forced motion submerged beneath the free surface is studied based on the boundary element method. Two relative locations, namely, horizontal and vertical, are examined for the twin cylinders. In both cases, the twin cylinders are starting from rest and ultimately moving with the same constant speed through an accelerating process. Assuming that the fluid is inviscid and incompressible and the flow to be irrotational, the integral Laplace equation can be discretized based on the boundary element method. Fully-nonlinear boundary conditions are satisfied on the unknown free surface and the moving body surface. The free surface is traced by a Lagrangian technique. Regriding and remeshing are applied, which is crucial to quality of the numerical results. Single circular cylinder and elliptical cylinder are calculated by linear method and fully nonlinear method for accuracy checking and then fully nonlinear method is conducted on the twin cylinder cases, respectively. The generated wave elevation and the resultant force are analysed to discuss the influence of the gap between the two cylinders as well as the water depth. It is found that no matter the kind of distribution, when the moving cylinders are close to each other, they suffer hydrodynamic force with large absolute value in the direction of motion. The trend of force varying with the increase of gap can be clearly seen from numerical analysis. The vertically distributed twin cylinders seem to attract with each other while the horizontally distributed twin cylinders are opposite when they are close to each other.
文摘The paper presents the formulation to compute numerically the unsteady aerodynamic forces on the vibrating annular cascade blades.The formulation is based on the finite volume method.By applying the TVD scheme to the linear unsteady calculations,the precise calculation of the peak of unsteady aerodynamic forces at the shock wave location like the delta function singularity becomes possible without empirical constants.As a further feature of the present paper,results of the present numerical calculation are compared with those of the double linearization theory(DLT),which assumes small unsteady and steady disturbances but the unsteady disturbances are much smaller than the steady disturbances.Since DLT requires far less computational resources than the present numerical calculation,the validation of DLT is quite important from the engineering point of view.Under the conditions of small steady disturbances,a good agreement between these two results is observed,so that the two codes are cross-validated.The comparison also reveals the limitation on the applicability of DLT.