By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wave...By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wavesolutions are constructed via the ε-expansion method and the corresponding graphical analysis is given.Furthermore,the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation.展开更多
By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution i...By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique.展开更多
Hirota method is applied to solve the modified nonlinear Schrodinger equation/the derivative nonlinear Schrodinger equation(MNLSE/DNLSE) under nonvanishing boundary conditions(NVBC) and lead to a single and double-pol...Hirota method is applied to solve the modified nonlinear Schrodinger equation/the derivative nonlinear Schrodinger equation(MNLSE/DNLSE) under nonvanishing boundary conditions(NVBC) and lead to a single and double-pole soliton solution in an explicit form. The general procedures of Hirota method are presented, as well as the limit approach of constructing a soliton-antisoliton pair of equal amplitude with a particular chirp. The evolution figures of these soliton solutions are displayed and analyzed. The influence of the perturbation term and background oscillation strength upon the DPS is also discussed.展开更多
This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
A bilinear form f on a nonassociative triple system T is said to be invariant if and only if f( abc ,d) = f(a, dcb ) = f(c, bad ) for all a,b,c,d ∈ T . (T ,f) is called a pseudo-metric triple system if f is non-degen...A bilinear form f on a nonassociative triple system T is said to be invariant if and only if f( abc ,d) = f(a, dcb ) = f(c, bad ) for all a,b,c,d ∈ T . (T ,f) is called a pseudo-metric triple system if f is non-degenerate and invariant. A decomposition theory for triple systems and pseudo-metric triple systems is established. Moreover, the ?nite-dimensional metric Lie triple systems are characterized in terms of the structure of the non-degenerate, invariant and symmetric bilinear forms on them.展开更多
This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous ...This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bihnear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.展开更多
1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact ...1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact solutions to nonlinear partial differential equations in the soliton theory, such as the KdV equation, the Boussinesq equation and the KP equation (see [1-2]).展开更多
Investigation in this paper is given to the reduced Maxwell-Bloeh equations with variable coetcients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric ...Investigation in this paper is given to the reduced Maxwell-Bloeh equations with variable coetcients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. We apply the Hirota method and symbolic computation to study such equations. With the help of the dependent variable transformations, we present the variable-coetteient-dependent bilinear forms. Then, we construct the one-, two- and N- soliton solutions in analytic forms for them.展开更多
Under the internal dissipative condition, the Cauchy problem for inhomogeneous quasilinear hyperbolic systems with small initial data admits a unique global C1 solution, which exponentially decays to zero as t →+∞,...Under the internal dissipative condition, the Cauchy problem for inhomogeneous quasilinear hyperbolic systems with small initial data admits a unique global C1 solution, which exponentially decays to zero as t →+∞, while if the coefficient matrix 19 of boundary conditions satisfies the boundary dissipative condition, the mixed initialboundary value problem with small initial data for quasilinear hyperbolic systems with nonlinear terms of at least second order admits a unique global C1 solution, which also exponentially decays to zero as t →+∞. In this paper, under more general conditions, the authors investigate the combined effect of the internal dissipative condition and the boundary dissipative condition, and prove the global existence and exponential decay of the C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems with small initial data. This stability result is applied to a kind of models, and an example is given to show the possible exponential instability if the corresponding conditions are not satisfied.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.60772023the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.BUAA-SKLSDE-09KF-04+1 种基金Beijing University of Aeronautics and Astronautics,by the National Basic Research Program of China (973 Program) under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant Nos.20060006024 and 200800130006,the Ministry of Education
文摘By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wavesolutions are constructed via the ε-expansion method and the corresponding graphical analysis is given.Furthermore,the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation.
基金supported by National Natural Science Foundation of China under Grant Nos.60772023 and 60372095the Key Project of the Ministry of Education under Grant No.106033+2 种基金the Open Fund of the State Key Laboratory of Software Development Environment under Grant No.SKLSDE-07-001Beijing University of Aeronautics and Astronautics,the National Basic Research Program of China(973 Program)under Grant No.2005CB321901the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20060006024,the Ministry of Education
文摘By the symbolic computation and Hirota method, the bilinear form and an auto-Backlund transformation for a variable-coemcient Korteweg-de Vries equation with nonuniformities are given. Then, the N-solitonic solution in terms of Wronskian form is obtained and verified. In addition, it is shown that the (N - 1)- and N-solitonic solutions satisfy the auto-Backlund transformation through the Wronskian technique.
基金Supported by the National Natural Science Foundation of China (12074295)。
文摘Hirota method is applied to solve the modified nonlinear Schrodinger equation/the derivative nonlinear Schrodinger equation(MNLSE/DNLSE) under nonvanishing boundary conditions(NVBC) and lead to a single and double-pole soliton solution in an explicit form. The general procedures of Hirota method are presented, as well as the limit approach of constructing a soliton-antisoliton pair of equal amplitude with a particular chirp. The evolution figures of these soliton solutions are displayed and analyzed. The influence of the perturbation term and background oscillation strength upon the DPS is also discussed.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
文摘A bilinear form f on a nonassociative triple system T is said to be invariant if and only if f( abc ,d) = f(a, dcb ) = f(c, bad ) for all a,b,c,d ∈ T . (T ,f) is called a pseudo-metric triple system if f is non-degenerate and invariant. A decomposition theory for triple systems and pseudo-metric triple systems is established. Moreover, the ?nite-dimensional metric Lie triple systems are characterized in terms of the structure of the non-degenerate, invariant and symmetric bilinear forms on them.
基金supported by NSF grant DMS-0713763the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. PolyU 501709)the AMSS-PolyU Joint Research Institute for Engineering and Management Mathematics, and NSERC (Canada)
文摘This paper applies bilinear immersed finite elements (IFEs) in the interior penalty discontinuous Galerkin (DG) methods for solving a second order elliptic equation with discontinuous coefficient. A discontinuous bihnear IFE space is constructed and applied to both the symmetric and nonsymmetric interior penalty DG formulations. The new methods can solve an interface problem on a Cartesian mesh independent of the interface with local refinement at any locations needed even if the interface has a nontrivial geometry. Numerical examples are provided to show features of these methods.
基金Project supported by the State Administration of Foreign Experts Affairs of Chinathe National Natural Science Foundation of China (Nos. 10831003,61072147,11071159)+2 种基金the Shanghai Municipal Natural Science Foundation (No. 09ZR1410800)the Shanghai Leading Academic Discipline Project (No.J50101)TUBITAK (the Scientific and Technological Research Council of Turkey) for its financial support and grant for the research entitled "Integrable Systems and Soliton Theory" at University of South Florida
文摘1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact solutions to nonlinear partial differential equations in the soliton theory, such as the KdV equation, the Boussinesq equation and the KP equation (see [1-2]).
基金Supported by the National Natural Science Foundation of China under Grant Nos.11772017,11272023,11471050the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(IPOC:2017ZZ05)the Fundamental Research Funds for the Central Universities of China under Grant No.2011BUPTYB02
文摘Investigation in this paper is given to the reduced Maxwell-Bloeh equations with variable coetcients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. We apply the Hirota method and symbolic computation to study such equations. With the help of the dependent variable transformations, we present the variable-coetteient-dependent bilinear forms. Then, we construct the one-, two- and N- soliton solutions in analytic forms for them.
基金supported by the National Natural Science Foundation of China(Nos.11326159,11401421)the China Postdoctoral Science Foundation(No.2014M560287)the Shanxi Scholarship Council of China(No.2013-045)
文摘Under the internal dissipative condition, the Cauchy problem for inhomogeneous quasilinear hyperbolic systems with small initial data admits a unique global C1 solution, which exponentially decays to zero as t →+∞, while if the coefficient matrix 19 of boundary conditions satisfies the boundary dissipative condition, the mixed initialboundary value problem with small initial data for quasilinear hyperbolic systems with nonlinear terms of at least second order admits a unique global C1 solution, which also exponentially decays to zero as t →+∞. In this paper, under more general conditions, the authors investigate the combined effect of the internal dissipative condition and the boundary dissipative condition, and prove the global existence and exponential decay of the C1 solution to the mixed initial-boundary value problem for quasilinear hyperbolic systems with small initial data. This stability result is applied to a kind of models, and an example is given to show the possible exponential instability if the corresponding conditions are not satisfied.