In this paper, we investigate a class of mixed initial-boundary value problems for a kind of n × n quasilinear hyperbolic systems of conservation laws on the quarter plan. We show that the structure of the pieeew...In this paper, we investigate a class of mixed initial-boundary value problems for a kind of n × n quasilinear hyperbolic systems of conservation laws on the quarter plan. We show that the structure of the pieeewise C^1 solution u = u(t, x) of the problem, which can be regarded as a perturbation of the corresponding Riemann problem, is globally similar to that of the solution u = U(x/t) of the corresponding Riemann problem. The piecewise C^1 solution u = u(t, x) to this kind of problems is globally structure-stable if and only if it contains only non-degenerate shocks and contact discontinuities, but no rarefaction waves and other weak discontinuities.展开更多
For a long time it was a common opinion that hyperbolic attractors are artificial mathematical constructions. However, in the recent papers there were proposed physically realizable systems that possess, in their phas...For a long time it was a common opinion that hyperbolic attractors are artificial mathematical constructions. However, in the recent papers there were proposed physically realizable systems that possess, in their phase space, the set with features that are very similar to hyperbolic type of attractors. As is known, invariant sets are called hyperbolic attractors of the dynamical system if they are closed, topologically transitive subsets, and every their trajectory possesses uniform hyperbolicity. Very familiar types of the hyperbolic attractors are Smale-Williams' solenoid and Plykin's attractor. Further, it is well known that chaotic systems are very sensitive to the external perturbations. This property is used for controlling nonlinear systems and chaos suppression. Thus, an important question arises: Is it possible to suppress chaos in systems with hyperbolic attractors because these attractors are structurally stable subsets? In the present contribution we study the possibility of stabilization of chaotic oscillations in systems with the Smale-Williams hyperbolic attractors by means of the Pyragas method with a delay. It is shown that by means of external perturbation the dynamical system could be controllable: the hyperbolic attractor degenerates into a periodic one.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.10671124
文摘In this paper, we investigate a class of mixed initial-boundary value problems for a kind of n × n quasilinear hyperbolic systems of conservation laws on the quarter plan. We show that the structure of the pieeewise C^1 solution u = u(t, x) of the problem, which can be regarded as a perturbation of the corresponding Riemann problem, is globally similar to that of the solution u = U(x/t) of the corresponding Riemann problem. The piecewise C^1 solution u = u(t, x) to this kind of problems is globally structure-stable if and only if it contains only non-degenerate shocks and contact discontinuities, but no rarefaction waves and other weak discontinuities.
文摘For a long time it was a common opinion that hyperbolic attractors are artificial mathematical constructions. However, in the recent papers there were proposed physically realizable systems that possess, in their phase space, the set with features that are very similar to hyperbolic type of attractors. As is known, invariant sets are called hyperbolic attractors of the dynamical system if they are closed, topologically transitive subsets, and every their trajectory possesses uniform hyperbolicity. Very familiar types of the hyperbolic attractors are Smale-Williams' solenoid and Plykin's attractor. Further, it is well known that chaotic systems are very sensitive to the external perturbations. This property is used for controlling nonlinear systems and chaos suppression. Thus, an important question arises: Is it possible to suppress chaos in systems with hyperbolic attractors because these attractors are structurally stable subsets? In the present contribution we study the possibility of stabilization of chaotic oscillations in systems with the Smale-Williams hyperbolic attractors by means of the Pyragas method with a delay. It is shown that by means of external perturbation the dynamical system could be controllable: the hyperbolic attractor degenerates into a periodic one.