期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于双编码器利用在线社交网络信息的股票价格预测 被引量:1
1
作者 崔文泉 王青芳 《中国科学技术大学学报》 CAS CSCD 北大核心 2020年第8期1093-1101,共9页
设计了双编码器-解码器模型,在模型的双编码器端分别对情绪变量和技术指标进行单独编码,以提高两类信息输入时编码器-解码器模型对股价的预测准确率.首先,对模型的编码和解码,基于门控循环单元(GRU)进行改进,通过去掉重置门,使用更新门... 设计了双编码器-解码器模型,在模型的双编码器端分别对情绪变量和技术指标进行单独编码,以提高两类信息输入时编码器-解码器模型对股价的预测准确率.首先,对模型的编码和解码,基于门控循环单元(GRU)进行改进,通过去掉重置门,使用更新门代替重置门的功能,将激活函数tanh替换为ReLU激活函数,以达到提高网络训练速度和模型精度的效果.其次,将市场情绪看作离散时间的随机过程,当固定时间时,市场情绪是服从某个概率分布的变量,对其概率分布进行估计,可得市场情绪关于积极、消极和中立的概率估计.进一步的,基于构建伪标签的情感分类器,建立情绪得分公式,并基于Bagging集成的方法对市场情绪的概率分布进行估计,作为投资者情绪变量的补充.另一方面,对多个超参数调整选优,设计正交试验,大大缩短了模型选参时间.实验结果表明,两输入的双编码器-解码器,不仅提升了编码器-解码器框架的股价预测效果,还通过引入投资者情绪,提高了模型的准确率和鲁棒性. 展开更多
关键词 在线社交网络 投资者情绪 双编码器-解码器 门控循环单元
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部