针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每...针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能.展开更多
针对原始萤火虫算法(Firefly Algorithm,FA)易陷入局部最优、求解精度低,双支持向量机(Twin Support Vector Machine,TWSVM)参数选择困难的问题,提出基于改进萤火虫算法(DEFA)的双支持向量机模型(DEFA-TWSVM).首先,对原始萤火虫算法进...针对原始萤火虫算法(Firefly Algorithm,FA)易陷入局部最优、求解精度低,双支持向量机(Twin Support Vector Machine,TWSVM)参数选择困难的问题,提出基于改进萤火虫算法(DEFA)的双支持向量机模型(DEFA-TWSVM).首先,对原始萤火虫算法进行改进,得到DEFA算法:在萤火虫位置更新公式中结合动态惯性权重,自适应地调整步长控制因子来快速搜索全局和局部最优解,对每次移动后的萤火虫群融入差分进化算法(Differential Evolution,DE)策略,保证种群迭代多样性,通过基准测试函数的仿真结果表明改进后的算法全局寻优能力强,不易陷入局部最优.其次,利用DEFA算法优化TWSVM的参数.最后,在UCI数据集进行测试,得到DEFA-TWSVM和其他模型的分类准确率.通过比较发现:DEFA算法可以在训练过程中自动确定TWSVM参数,解决了TWSVM参数选择盲目的问题,平均分类准确率相较其他模型提高了2到5个百分点.展开更多
双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因...双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因子值难以确定的问题,在每次迭代中根据待优化参数的变化情况自动选择最佳的因子值,同时引入迭代竞争因子,避免算法前期陷入混乱,而后期又能更好地找到全局最优值。将基于CISPO优化的TSVR模型应用到电力系统短期负荷预测中,结果表明,该方法能有效提高负荷预测的速度和精度。展开更多
文摘针对最小二乘双参数间隔支持向量机(LSTPMSVM)对噪声敏感且在分类过程中易受异常值影响的问题,提出了一种鲁棒的模糊最小二乘双参数间隔支持向量机算法(RFLSTPMSVM).该算法利用松弛变量的2范数使得优化问题具有强凸性,再根据隶属度为每个样本分配相应的权重,有效降低异常值带来的影响.同时,在目标函数中引入K-近邻加权,考虑样本之间的局部信息,提高模型的分类准确率.此外,通过求解简单的线性方程组来优化该算法,而不是求解二次规划问题,使模型具有较快的计算速度.在UCI(university of California irvine)数据集上对该算法进行性能评估,并与TWSVM、LSTSVM、LSTPMSVM和ULSTPMSVM 4种算法进行比较.数值实验结果表明,该算法具有更好的泛化性能.
文摘双胞支持向量回归TSVR(twin support vector regression)参数的合理选择严重影响回归结果的准确性。该文采用竞争型智能单粒子算法CISPO(competitive intelligent single particle optimizer)优化参数。CISPO针对智能单粒子算法中各因子值难以确定的问题,在每次迭代中根据待优化参数的变化情况自动选择最佳的因子值,同时引入迭代竞争因子,避免算法前期陷入混乱,而后期又能更好地找到全局最优值。将基于CISPO优化的TSVR模型应用到电力系统短期负荷预测中,结果表明,该方法能有效提高负荷预测的速度和精度。