We derive a formula for double-pulse spectra from closed-orbit theory. We then calculate the double-pulse photodetachment spectra of H<SUP>?</SUP> in the presence of parallel electric and magnetic fields. ...We derive a formula for double-pulse spectra from closed-orbit theory. We then calculate the double-pulse photodetachment spectra of H<SUP>?</SUP> in the presence of parallel electric and magnetic fields. We analyze the spectra in terms of closed-orbits of the system. We suggest a method for the measurement of a phase associated with each closed-orbit.展开更多
Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical do...Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical double resonance (PFOODR) fluorescence excitation spectroscopy. These new data fill the gap between the low-v levels mainly observed by continuous wave (CW) PFOODR spectroscopy and the high-v levels above the 3s+3d limit observed by pulsed PFOODR with predissociation detection, Molecular constants are fitted below potential shelf around the 3s+3d atomic limit with previously published data (mainly observed by CW PFOODR) and these new data. RKR potential curve has been calculated with the new constants. The constants are: Te= 32127.090 cm^-1,ωe=121.4099(0.20720) cm^-1, Be = 0.116287(0.0002300) cm^-1, Re=3.551 A, An error of the RKR potential curve of J. Chem. Phys. 108, 7707 (1998) is corrected.展开更多
This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear syst...This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.展开更多
The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-...The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-MIG heat source of double-ellipsoidal volumetric model were developed to simulate the temperature and stress fields under different welding conditions.The macro-morphology and microstructure of welding joints at the corresponding currents were observed in the experiment.The results show that the best condition is at an average current of 90 A and current difference of 40 A,when the maximum temperature is 200 °C higher than the fusion points,with the temperature difference of about 100 °C and stress change of 10 MPa between thermal pulse and thermal base.Under these conditions,Al alloy T-joint with proper fusion condition has smooth fish-scale welding appearance and finer microstructure.Furthermore,the thermal curves and stress distribution in the experiment are consistent with those in the simulation,verifying the precision of the welding simulation.展开更多
A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 1...A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 125 nm ultraviolet pulse to the orthogonal two-color field, not only the harmonic yield is enhanced by 2 orders of magnitude compared with the original orthogonal two-color field case, but also the single short quantum path, which is selected to contribute to the harmonic spectrum, results in an ultrabroad 152 eV bandwidth. Moreover, by optimizing the laser parameters, we find that the harmonic enhancement is not very sen- sitive to the pulse duration and the polarized angle of the assisted ultraviolet pulse, which is much better for experimental realization. As a result, an isolated pulse with duration of 38 as can be obtained, which is 2 orders of magnitude improvement in comparison with the original two-color orthogonal field case.展开更多
An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods ...An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.展开更多
In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by...In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.展开更多
Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is p...Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is proposed to decrease the complexity of the circuit. A divided-by-16/17 DMP for application in a digital video broadcasting-terrestrial receiver is realized with a TSMC 0.18μm mixed-signal CMOS process. The programmable & pulse swallow divider in this receiver is designed with a 0.18μm CMOS standard cell library and realized in the same process. The measured results show that the DMP has an output jitter of less than 0.03% and works well with the programmable & pulse swallow divider.展开更多
Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-wel...Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.展开更多
6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and tim...6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.展开更多
Double-wavelength recording used in a pulsed digital micro-holographic system to record ultra-fast processing of the order of femto-second is reported for the first time, where a BBO crystal is used to generate harmon...Double-wavelength recording used in a pulsed digital micro-holographic system to record ultra-fast processing of the order of femto-second is reported for the first time, where a BBO crystal is used to generate harmonic wave of the incident laser wave, and both of the basic and the frequency doubled waves are time-delayed and introduced to a Michelson's interferometer to record two sub-holograms with different spatial frequencies on a single frame of a CCD. In the experiment, an ultrafast dynamic process of air ionization induced by a single femto-second laser pulse is recorded with holography by this system, and both of intensity and phase difference images digitally reconstructed are obtained through Fourier transformation and digital faltering, which show clearly the dynamic process of formation and propagation of the plasma, with a time resolution of the order of femto-second.展开更多
The reconstruction of spacecraft cluster based on local information and distributed strategy is investigated.Each spacecraft is an intelligent individual that can detect information within a limited range and can dete...The reconstruction of spacecraft cluster based on local information and distributed strategy is investigated.Each spacecraft is an intelligent individual that can detect information within a limited range and can determine its behavior based on surrounding information.The objective of the cluster is to achieve the formation reconstruction with minimum fuel consumption.Based on the principle of dual pulse rendezvous maneuver,three target selection strategies are designed for collision avoidance.Strategy-1 determines the target point’s attribution according to the target’s distance when the target point conflicts and uses a unit pulse to avoid a collision.Strategy-2 changes the collision avoidance behavior.When two spacecraft meet more than once,the strategy switches the target points of the two spacecraft.In Strategy-3,the spacecraft closer to the target has higher priority in target allocation.Strategy-3 also switches the target points when two spacecraft encounter more than once.The three strategies for a given position,different completion times,and random position are compared.Numerical simulations show that all three strategies can accomplish the spacecraft cluster's reconfiguration under the specified requirements.Strategy-3 is better than Strategy-1 in all simulation cases in the sense of less fuel consumption with different completion times and given location,and it is more effective than Strategy-2 in most of the completion time.With a random initial position and given time,Strategy-3 is better than Strategy-1 in about 70%of the cases and more stable.展开更多
Investigations are directed to the development of high-power sources ofUWB (ultrawideband) radiation based on excitation of anterma arrays with bipolar voltage pulses. In the previously designed high-power UWB sourc...Investigations are directed to the development of high-power sources ofUWB (ultrawideband) radiation based on excitation of anterma arrays with bipolar voltage pulses. In the previously designed high-power UWB sources only one bipolar pulse former and different feeder systems for pulse distribution through the array elements were used. By means of this approach, a number of UWB sources were created with the bipolar voltage pulse length ranging from 0.2 to 2 ns and effective potential of radiation ranging from 0.4 to 3 MV. The approach has got a restriction related to the electrical breakdown in a bipolar voltage pulse former. A new approach to the creation of high-power UWB sources based on a multicharmel bipolar pulse former is suggested: the number of bipolar pulse formers is equal to the number of antennas in the array. The main problem in realization of this approach is a stable operation of bipolar pulse formers in order to ensure a coherent summation of radiated pulses in the far-field zone. The result of this work is the instability of-150 ps at the pulse length of 3 ns obtained in a one-channel bipolar pulse former indicating that the suggested approach is realizable.展开更多
In this paper, we have investigated theoretically the high harmonic generation form helium atom in long wavelength driving regime at 2000 nm through solving time-dependent Schr6dinger equation. By adding a second harm...In this paper, we have investigated theoretically the high harmonic generation form helium atom in long wavelength driving regime at 2000 nm through solving time-dependent Schr6dinger equation. By adding a second harmonic pulse (1000 nm) and a UV attosecond pulse (200 nm) to the driving field, an efficient method for picking out and enhancing ionization path to generate high-yield supercontinuum harmonics is realized, and then an isolated sub-100 as pulse with a bandwidth of 190 eV is significantly obtained.展开更多
The simulation of the early-time High-altitude Electromagnetic Pulse (HEMP) environment (El) with bicone-cage antenna in free space requires utilization of the spherical wave to reproduce the boundless plane wave....The simulation of the early-time High-altitude Electromagnetic Pulse (HEMP) environment (El) with bicone-cage antenna in free space requires utilization of the spherical wave to reproduce the boundless plane wave. The transient radiation of the antenna above the lossy ground is computed using the Finite-Difference Time-Domain (FDTD) method The determining factors of the field waveform are explored and analysed on the basis of the physical evolution process of the transient radiation. The typical waveform of the electric field and the field distribution characteristics, both of which are important for HEMP simulator design and the effect tests, are presented. The study indicates that the simulation should be analysed from the perspective of both environment building and simulator applications.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for power...Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for powering induction furnaces, in audio technique. Spectrum of signals sampled by pulse amplitude modulation and output voltage spectrum of the converter with pulse width modulation have similar properties. Spectrum of signals sampled by pulse amplitude modulation contains a harmonic of frequency equal to the frequency of the modulating signal and the harmonics of frequencies equal to the sum of frequency of the modulating signal and multiples of the sampling frequency. The output voltage spectrum of the converter with bipolar pulse width modulation contains harmonic of frequency equal to the frequency of the modulating signal and harmonics of frequencies equal to sum of the frequency of the modulating signal and multiples of the frequency of the carrier signal. It also contains harmonics of frequencies equal to the sum of the multiples of the frequency of the modulating signal and the multiples of the carrier signal. The comparison analysis was carried out for the harmonics of the output voltage of the converter with bipolar pulse width modulation in time domain. The dependency of the amplitudes and frequency spectrum on the wave forms of the carrier signal and modulating signal was shown. Similarity of the output voltage spectrum of the converter and signal spectrum sampled by the pulse width modulation was also shown. Key words: Output voltage converter with bipolar pulse width modulation, spectral analysis, Fourier series, carrier signal, reference signal.展开更多
This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The propo...This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the grid through a back-to-back AC-DC-AC PWM (pulse width modulation) converter. The RSC (rotor side converter) is controlled in such a way to extract a maximum power, for a wide range of wind speed. The GSC (grid side converter) is controlled in order to filter harmonic currents of a nonlinear load coupled at the PCC (point of common coupling) and ensure smooth DC bus voltage. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed and power quality improvement is achieved.展开更多
In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capab...In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.展开更多
文摘We derive a formula for double-pulse spectra from closed-orbit theory. We then calculate the double-pulse photodetachment spectra of H<SUP>?</SUP> in the presence of parallel electric and magnetic fields. We analyze the spectra in terms of closed-orbits of the system. We suggest a method for the measurement of a phase associated with each closed-orbit.
基金This work was supported by the National Natural Science Foundation of China(NSFC No. 20473042, N0. 20173029 and 10174042), NKBRSF, and SRFDP of China and by RFBR(grant 05-03-39012) of Russia.
文摘Sixty-five new vibronic levels of the Na2 4^3∑g^+ state have been observed in the 33900-35200 cm^-1 energy region above the potential minimum of the ground state by pulsed perturbation facilitated optical-optical double resonance (PFOODR) fluorescence excitation spectroscopy. These new data fill the gap between the low-v levels mainly observed by continuous wave (CW) PFOODR spectroscopy and the high-v levels above the 3s+3d limit observed by pulsed PFOODR with predissociation detection, Molecular constants are fitted below potential shelf around the 3s+3d atomic limit with previously published data (mainly observed by CW PFOODR) and these new data. RKR potential curve has been calculated with the new constants. The constants are: Te= 32127.090 cm^-1,ωe=121.4099(0.20720) cm^-1, Be = 0.116287(0.0002300) cm^-1, Re=3.551 A, An error of the RKR potential curve of J. Chem. Phys. 108, 7707 (1998) is corrected.
基金supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region of China“Research on model order reduction methods based on the discrete orthogonal polynomials”(2023D01C163)The Tianchi Talent Introduction Plan Project of Xinjiang Uygur Autonomous Region of China“Research on orthogonal decomposition model order reduction methods for discrete control systems”.
文摘This paper explores model order reduction(MOR)methods for discrete linear and discrete bilinear systems via discrete pulse orthogonal functions(DPOFs).Firstly,the discrete linear systems and the discrete bilinear systems are expanded in the space spanned by DPOFs,and two recurrence formulas for the expansion coefficients of the system’s state variables are obtained.Then,a modified Arnoldi process is applied to both recurrence formulas to construct the orthogonal projection matrices,by which the reduced-order systems are obtained.Theoretical analysis shows that the output variables of the reducedorder systems can match a certain number of the expansion coefficients of the original system’s output variables.Finally,two numerical examples illustrate the feasibility and effectiveness of the proposed methods.
基金Project(51475156)supported by the National Natural Science Foundation of China
文摘The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-MIG heat source of double-ellipsoidal volumetric model were developed to simulate the temperature and stress fields under different welding conditions.The macro-morphology and microstructure of welding joints at the corresponding currents were observed in the experiment.The results show that the best condition is at an average current of 90 A and current difference of 40 A,when the maximum temperature is 200 °C higher than the fusion points,with the temperature difference of about 100 °C and stress change of 10 MPa between thermal pulse and thermal base.Under these conditions,Al alloy T-joint with proper fusion condition has smooth fish-scale welding appearance and finer microstructure.Furthermore,the thermal curves and stress distribution in the experiment are consistent with those in the simulation,verifying the precision of the welding simulation.
文摘A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 125 nm ultraviolet pulse to the orthogonal two-color field, not only the harmonic yield is enhanced by 2 orders of magnitude compared with the original orthogonal two-color field case, but also the single short quantum path, which is selected to contribute to the harmonic spectrum, results in an ultrabroad 152 eV bandwidth. Moreover, by optimizing the laser parameters, we find that the harmonic enhancement is not very sen- sitive to the pulse duration and the polarized angle of the assisted ultraviolet pulse, which is much better for experimental realization. As a result, an isolated pulse with duration of 38 as can be obtained, which is 2 orders of magnitude improvement in comparison with the original two-color orthogonal field case.
文摘An optimized method is presented to design the down scalers in a GHz frequency synthesizer. The down scalers are comprised of dual modulus prescaler (DMP) and programmable & pulse swallow divider,different methods of high frequency analog circuit and digital logical synthesis are adopted respectively. Using a DMP high speed, lower jitter and lower power dissipation are obtained,and output frequency of 133.0MHz of the DMP working at divide-by-8 shows an RMS jitter less than 2ps. The flexibility and reusability of the progrs, mmable divider is high;its use could be extended to many complicated frequency synthesizers. By comparison,it is a better design on performance of high-frequency circuit and good design flexibility.
基金Project (51004056) supported by the National Natural Science Foundation of ChinaProject (KKZ6201152009) supported by the Opening Foundation of Key Laboratory of Inorganic Coating Materials, ChinaProjects (2011239, 2011240) supported by Analysis and Measurement Research Fund of Kunming University of Science and Technology,China
文摘In order to search for a suitable anode material used in zinc electrowinning in place of Pb-Ag alloy,Al/Pb-PANI(polyaniline)-WC(tungsten carbide) composite inert anodes were prepared on aluminum alloy substrate by double pulse electrodeposition(DPE) of PANI and WC particles with Pb2+ from an original plating bath.Thereafter,anodic polarization curves,cyclic voltammetry curves and Tafel polarization curves for the composite inert anodes obtained under different PANI concentrations in the original plating bath were measured,and the microstructural features were also investigated by scanning electron microscopy(SEM).The results show that Al/Pb-PANI-WC composite inert anode obtained under PANI concentration of 20 g/L in the original plating bath possesses uniform microstructures and composition distributions,higher electrocatalytic activity,better reversibility of electrode reaction and corrosion resistance in a synthetic zinc electrowinning electrolyte of 50 g/L Zn2+,150 g/L H2SO4 at 35 °C.Compared with Pb-1%Ag alloy,the overpotential of oxygen evolutions for the composite inert anode are decreased by 185 mV and 166 mV,respectively,under 500 A/m2 and 1000 A/m2.
文摘Dual-modulus prescalers (DMP) for RF receivers are studied. An improved D-latch is proposed to increase the speed and the driving capability of the DMP. A novel D-latch architecture integrated with ‘OR' logic is proposed to decrease the complexity of the circuit. A divided-by-16/17 DMP for application in a digital video broadcasting-terrestrial receiver is realized with a TSMC 0.18μm mixed-signal CMOS process. The programmable & pulse swallow divider in this receiver is designed with a 0.18μm CMOS standard cell library and realized in the same process. The measured results show that the DMP has an output jitter of less than 0.03% and works well with the programmable & pulse swallow divider.
基金Projects(31665004,31715011) supported by the Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,Hunan University,ChinaProject(15C0450) supported by the Educational Commission of Hunan Province of China
文摘Four different welding sequences of double-pulse MIG welding were conducted for 6061-T6 aluminum alloy automobile bumpers by using nonlinear elastoplasticity finite element method based on ABAQUS software.The post-welding residual stress and deformation were definitely different among the four welding sequences.The results showed that the highest temperature in Solution A was approximately 200℃higher than the melting point of base metal.High residual stress was resulted from this large temperature gradient and mainly concentrated on the welding vicinity between beam and crash box.The welding deformation primarily occurred in both of the contraction of two-ends of the beam and the self-contraction of crash box.Compared with other welding sequences,the residual stress in Solution A was the smallest,whereas the welding deformation was the largest.However,the optimal sequence was Solution B because of the effective reduction of residual stress and good assembly requirements.
基金Projects(2019JJ70077,2019JJ50510) supported by the National Science Foundation of Hunan Province,ChinaProject(31665004) supported by Open Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body,ChinaProjects(18B552,18B285) supported by Scientific Research Fund of Hunan Provincial Education Department,China
文摘6061 aluminum alloy T-joints were welded by double-pulsed MIG welding process. Then, the post-weld heat treatment was performed on the welded T-joints. The weld microstructure under different aging temperature and time was investigated by transmission electron microscopy and scanning electron microscopy. The mechanical properties were examined by hardness test and tensile test. The results showed that the micro-hardness was sensitive to heat treatment temperature and time. Increasing temperature was beneficial to the shortening of peak aging time. There were a large number of dislocations and few precipitates in the welded joints. With the increase of post-weld heat treatment temperature and time, the density of dislocation decreased. Meanwhile, the strengthening phase precipitated and grew up gradually. When the post-weld heat treatment temperature increased up to 200℃, large Q' phases were observed. And they were responsible for the peak value of the micro-hardness in the welded joints.
基金This work is financially supported by the National Natural Sci-ence Foundation of China (Grant No. 60377008)
文摘Double-wavelength recording used in a pulsed digital micro-holographic system to record ultra-fast processing of the order of femto-second is reported for the first time, where a BBO crystal is used to generate harmonic wave of the incident laser wave, and both of the basic and the frequency doubled waves are time-delayed and introduced to a Michelson's interferometer to record two sub-holograms with different spatial frequencies on a single frame of a CCD. In the experiment, an ultrafast dynamic process of air ionization induced by a single femto-second laser pulse is recorded with holography by this system, and both of intensity and phase difference images digitally reconstructed are obtained through Fourier transformation and digital faltering, which show clearly the dynamic process of formation and propagation of the plasma, with a time resolution of the order of femto-second.
基金supported by the Advanced Research Project of China Manned Space Program.
文摘The reconstruction of spacecraft cluster based on local information and distributed strategy is investigated.Each spacecraft is an intelligent individual that can detect information within a limited range and can determine its behavior based on surrounding information.The objective of the cluster is to achieve the formation reconstruction with minimum fuel consumption.Based on the principle of dual pulse rendezvous maneuver,three target selection strategies are designed for collision avoidance.Strategy-1 determines the target point’s attribution according to the target’s distance when the target point conflicts and uses a unit pulse to avoid a collision.Strategy-2 changes the collision avoidance behavior.When two spacecraft meet more than once,the strategy switches the target points of the two spacecraft.In Strategy-3,the spacecraft closer to the target has higher priority in target allocation.Strategy-3 also switches the target points when two spacecraft encounter more than once.The three strategies for a given position,different completion times,and random position are compared.Numerical simulations show that all three strategies can accomplish the spacecraft cluster's reconfiguration under the specified requirements.Strategy-3 is better than Strategy-1 in all simulation cases in the sense of less fuel consumption with different completion times and given location,and it is more effective than Strategy-2 in most of the completion time.With a random initial position and given time,Strategy-3 is better than Strategy-1 in about 70%of the cases and more stable.
文摘Investigations are directed to the development of high-power sources ofUWB (ultrawideband) radiation based on excitation of anterma arrays with bipolar voltage pulses. In the previously designed high-power UWB sources only one bipolar pulse former and different feeder systems for pulse distribution through the array elements were used. By means of this approach, a number of UWB sources were created with the bipolar voltage pulse length ranging from 0.2 to 2 ns and effective potential of radiation ranging from 0.4 to 3 MV. The approach has got a restriction related to the electrical breakdown in a bipolar voltage pulse former. A new approach to the creation of high-power UWB sources based on a multicharmel bipolar pulse former is suggested: the number of bipolar pulse formers is equal to the number of antennas in the array. The main problem in realization of this approach is a stable operation of bipolar pulse formers in order to ensure a coherent summation of radiated pulses in the far-field zone. The result of this work is the instability of-150 ps at the pulse length of 3 ns obtained in a one-channel bipolar pulse former indicating that the suggested approach is realizable.
基金Supported by the Natural Science Foundation of Hubei Province under Grant No.2008CDB317
文摘In this paper, we have investigated theoretically the high harmonic generation form helium atom in long wavelength driving regime at 2000 nm through solving time-dependent Schr6dinger equation. By adding a second harmonic pulse (1000 nm) and a UV attosecond pulse (200 nm) to the driving field, an efficient method for picking out and enhancing ionization path to generate high-yield supercontinuum harmonics is realized, and then an isolated sub-100 as pulse with a bandwidth of 190 eV is significantly obtained.
文摘The simulation of the early-time High-altitude Electromagnetic Pulse (HEMP) environment (El) with bicone-cage antenna in free space requires utilization of the spherical wave to reproduce the boundless plane wave. The transient radiation of the antenna above the lossy ground is computed using the Finite-Difference Time-Domain (FDTD) method The determining factors of the field waveform are explored and analysed on the basis of the physical evolution process of the transient radiation. The typical waveform of the electric field and the field distribution characteristics, both of which are important for HEMP simulator design and the effect tests, are presented. The study indicates that the simulation should be analysed from the perspective of both environment building and simulator applications.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
文摘Converters with pulse width modulation are used for connections between the direct current (DC) and alternating current (AC) networks, e.g., in uninterrupted power supply systems, AC electromotor drives, for powering induction furnaces, in audio technique. Spectrum of signals sampled by pulse amplitude modulation and output voltage spectrum of the converter with pulse width modulation have similar properties. Spectrum of signals sampled by pulse amplitude modulation contains a harmonic of frequency equal to the frequency of the modulating signal and the harmonics of frequencies equal to the sum of frequency of the modulating signal and multiples of the sampling frequency. The output voltage spectrum of the converter with bipolar pulse width modulation contains harmonic of frequency equal to the frequency of the modulating signal and harmonics of frequencies equal to sum of the frequency of the modulating signal and multiples of the frequency of the carrier signal. It also contains harmonics of frequencies equal to the sum of the multiples of the frequency of the modulating signal and the multiples of the carrier signal. The comparison analysis was carried out for the harmonics of the output voltage of the converter with bipolar pulse width modulation in time domain. The dependency of the amplitudes and frequency spectrum on the wave forms of the carrier signal and modulating signal was shown. Similarity of the output voltage spectrum of the converter and signal spectrum sampled by the pulse width modulation was also shown. Key words: Output voltage converter with bipolar pulse width modulation, spectral analysis, Fourier series, carrier signal, reference signal.
文摘This paper presents the control ofa WECS (wind energy conversion system), equipped with a DFIG (doubly fed induction generator), for maximum power generation and power quality improvement simultaneously. The proposed control algorithm is applied to a DFIG whose stator is directly connected to the grid and the rotor is connected to the grid through a back-to-back AC-DC-AC PWM (pulse width modulation) converter. The RSC (rotor side converter) is controlled in such a way to extract a maximum power, for a wide range of wind speed. The GSC (grid side converter) is controlled in order to filter harmonic currents of a nonlinear load coupled at the PCC (point of common coupling) and ensure smooth DC bus voltage. Simulation results show that the wind turbine can operate at its optimum energy for a wide range of wind speed and power quality improvement is achieved.
文摘In order to qualify shock resistance performance of shipboard equipments and simulate real underwater explosion environment,a novel dual-pulse shock test machine is proposed.The new machine will increase testing capability and meet special shock testing requirement.Two key parts of the machine,the velocity generator and the shock pulse regulator,play an important role in producing the positive acceleration pulse and the succeeding negative acceleration pulse,respectively.The generated dual-pulse shock for test articles is in conformity with an anti-shock test specification.Based on the impact theory,a nonlinear dynamic model of the hydraulically-actuated test machine is established with thorough analysis on its mechanism that involves conversion of gas potential energy and dissipation of kinetic energy.Simulation results have demonstrated that the proposed machine is able to produce a double-pulse acceleration shock in the time domain or a desired shock response spectrum in the frequency domain,which sets up a base for the construction of the machine.