A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 1...A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 125 nm ultraviolet pulse to the orthogonal two-color field, not only the harmonic yield is enhanced by 2 orders of magnitude compared with the original orthogonal two-color field case, but also the single short quantum path, which is selected to contribute to the harmonic spectrum, results in an ultrabroad 152 eV bandwidth. Moreover, by optimizing the laser parameters, we find that the harmonic enhancement is not very sen- sitive to the pulse duration and the polarized angle of the assisted ultraviolet pulse, which is much better for experimental realization. As a result, an isolated pulse with duration of 38 as can be obtained, which is 2 orders of magnitude improvement in comparison with the original two-color orthogonal field case.展开更多
Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation(HHG).For this purpose,the shaping of the waveform of driving pulse is an alterna...Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation(HHG).For this purpose,the shaping of the waveform of driving pulse is an alternative approach.Here,we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects,by adopting a practical way to synthesize two-color fields with fixed energy.Our results,combined with the experimental techniques,show the great potential of HHG as a tabletop light source.展开更多
An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicin...An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicinity of metallic nanostructures. The results show that by properly choosing the inhomogeneity of the two-color multi-cycle(20 fs) weak pulse(1013W/cm2), not only the harmonic cutoff has been extended, resulting in a broadband XUV continuum, but also the single short quantum path has been selected to contribute to the harmonic. As a result, two isolated XUV pulses with durations of 68 as and 66 as can be obtained.展开更多
文摘A promising method to improve the attosecond pulse intensity has been theoretically pre- sented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 125 nm ultraviolet pulse to the orthogonal two-color field, not only the harmonic yield is enhanced by 2 orders of magnitude compared with the original orthogonal two-color field case, but also the single short quantum path, which is selected to contribute to the harmonic spectrum, results in an ultrabroad 152 eV bandwidth. Moreover, by optimizing the laser parameters, we find that the harmonic enhancement is not very sen- sitive to the pulse duration and the polarized angle of the assisted ultraviolet pulse, which is much better for experimental realization. As a result, an isolated pulse with duration of 38 as can be obtained, which is 2 orders of magnitude improvement in comparison with the original two-color orthogonal field case.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11264036,11164025,11364038the Specialize Research Fund for the Doctoral Program of Higher Education of China under Grant No.20116203120001the Basic Scientific Researc Foundation for Institution of Higher Learning of Gansu Province
文摘Increasing simultaneously both the cutoff energy and efficiency is a big challenge to all applications of high-order harmonic generation(HHG).For this purpose,the shaping of the waveform of driving pulse is an alternative approach.Here,we show that the harmonic cutoff can be extended by about two times without reducing harmonic yield after considering macroscopic propagation effects,by adopting a practical way to synthesize two-color fields with fixed energy.Our results,combined with the experimental techniques,show the great potential of HHG as a tabletop light source.
基金Supported by the Scientific Research Fund of Liaoning University of Technology of China under Grant No.X201319the Scientific Research Fund of Liaoning Provincial Education Department under Grant No.L2014242
文摘An efficient method for attosecond extreme ultraviolet source generation under the two-color multi-cycle weak pulse has been theoretically presented by using the concept of the plasmonic field enhancement in the vicinity of metallic nanostructures. The results show that by properly choosing the inhomogeneity of the two-color multi-cycle(20 fs) weak pulse(1013W/cm2), not only the harmonic cutoff has been extended, resulting in a broadband XUV continuum, but also the single short quantum path has been selected to contribute to the harmonic. As a result, two isolated XUV pulses with durations of 68 as and 66 as can be obtained.