期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化算法的支持向量机研究 被引量:51
1
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子群优化算法(PSO) 支持向量机(SVM) 优化 双螺旋分类 评价
下载PDF
基于模糊积分的多神经网络集成信息融合 被引量:1
2
作者 王征宇 肖南峰 《计算机工程》 CAS CSCD 2012年第16期157-160,共4页
使用模糊积分实现集成神经网络中的子分类器信息融合,提出一种更加有效和全面的模糊密度,用于模糊积分的计算。以双螺旋分类问题为实验对象,使用集成神经网络实现具有较高正确率的分类方法,对神经网络集成的有效性和各类参数的设定作实... 使用模糊积分实现集成神经网络中的子分类器信息融合,提出一种更加有效和全面的模糊密度,用于模糊积分的计算。以双螺旋分类问题为实验对象,使用集成神经网络实现具有较高正确率的分类方法,对神经网络集成的有效性和各类参数的设定作实验分析,并通过多种模糊密度的比较数据说明该模糊密度函数的有效性。 展开更多
关键词 神经网络集成 集成学习 信息融合 模糊积分 模糊密度 双螺旋分类问题
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部