期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
论两类Smarandache行列式的推广 被引量:2
1
作者 杨长恩 《咸阳师范学院学报》 2010年第4期1-3,共3页
通过类似于Smarandache循环行列式、循环算术级数行列式、双对称行列式,定义了Smarandache循环几何级数行列式、双对称几何级数行列式及其一般化,并利用行列式的基本性质,解决了Smarandache循环几何级数行列式及其一般化和Smarandache... 通过类似于Smarandache循环行列式、循环算术级数行列式、双对称行列式,定义了Smarandache循环几何级数行列式、双对称几何级数行列式及其一般化,并利用行列式的基本性质,解决了Smarandache循环几何级数行列式及其一般化和Smarandache双对称几何级数行列式的计算问题。 展开更多
关键词 Smarandache循环行列式 Smarandache对称行列式 Smarandache循环几何级数行列式 Smarandache对称几何级数行列式
下载PDF
负向等谱4位势Ablowitz-Ladik方程的新双Casorati解(英文) 被引量:3
2
作者 薛益民 陈守婷 《中国科学技术大学学报》 CAS CSCD 北大核心 2015年第12期994-100,共9页
利用构造双Casorati行列式元素的矩阵方法研究了负向等谱4位势Ablowitz-Ladik方程.通过将矩阵取成一些特殊的形式,导出该方程新的双Casorati解,即Matveev解和混合解.
关键词 负向等谱4位势Ablowitz-Ladik方程 Casorati行列式 Matveev解 混合解
下载PDF
负向4位势Ablowitz-Ladik等谱方程的双Casoratian解(英文) 被引量:1
3
作者 陈守婷 李琪 《江苏师范大学学报(自然科学版)》 2013年第4期11-17,共7页
借助Wronskian技巧得到负向4位势Ablowitz-Ladik等谱方程的双Casoratian解,并给出了一些双Casorati行列式解的具体表达式.进一步地,通过构造双Casorati行列式元素的矩阵方法推导出该方程的广义双Casoratian解.
关键词 负向4位势Ablowitz—Ladik等谱方程 WRONSKIAN技巧 Casorati行列式
下载PDF
一类广义Schrdinger方程的双Wronskian解
4
作者 吴妙仙 《浙江师范大学学报(自然科学版)》 CAS 2010年第3期271-276,共6页
应用Wronskian技巧,导出了一类广义Schrdinger方程的双Wronskian形式解,同时给出了该方程的类有理解.
关键词 广义Schrdinger方程 HIROTA方法 Wronskian行列式 类有理解
下载PDF
四元数正规矩阵的一些性质
5
作者 谢清明 陈国平 《吉首大学学报》 1998年第1期59-62,共4页
得到了四元数体Q上正规矩阵的双行列式的一些不等式,同时给出了可中心化正规矩阵的一些性质。
关键词 四元数体 双行列式 正规矩阵 可中心化矩阵 四元素矩阵 四元素自共轭矩阵
下载PDF
反向4位势Ablowitz-Ladik方程的Complexiton解 被引量:1
6
作者 陈守婷 薛益民 《中国科学技术大学学报》 CAS CSCD 北大核心 2019年第9期711-722,共12页
微分差分可积方程的精确求解一直以来都是孤立子理论中的一个非常重要的课题,也是偏微分方程教学的拓展和延伸内容.基于偏微分方程的教学实践与科学研究,借助双Casorati技巧和构造双Casorati行列式元素的矩阵方法,在数学软件Maple的辅助... 微分差分可积方程的精确求解一直以来都是孤立子理论中的一个非常重要的课题,也是偏微分方程教学的拓展和延伸内容.基于偏微分方程的教学实践与科学研究,借助双Casorati技巧和构造双Casorati行列式元素的矩阵方法,在数学软件Maple的辅助下,求出等谱的反向4位势Ablowitz-Ladik方程的Complexiton解和周期解,并通过对矩阵取不同的特殊形式,进一步得到该方程的Complexiton解与类有理解和Matveev解分别作用后的混合解. 展开更多
关键词 反向4位势Ablowitz-Ladik方程 Casorati行列式 Complexiton解 混合解
下载PDF
Generalized Wronskian Solutions to Modified Korteweg-de Vries Equation via Its Bcklund Transformation
7
作者 XUAN Qi-Fei ZHANG Da-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期13-16,共4页
In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an a... In the paper we discuss the Wronskian solutions of modified Korteweg-de Vries equation (mKdV) via the Backlund transformation (BT) and a generalized Wronskian condition is given, which allows us to substitute an arbitrary coefficient matrix in the GN (t) for the original diagonal one. 展开更多
关键词 the modified Korteweg-de Vries equation (mKdV) generalized Wronskian solutions bilinear form Backlund transformation (BT)
下载PDF
Extended Wronskian Determinant Approach and Iterative Solutions ofOne-Dimensional Dirac Equation
8
作者 XUYing LUMeng SURu-Keng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第6期859-866,共8页
An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave... An approximation method, namely, the Extended Wronskian Determinant Approach, is suggested to study the one-dimensional Dirac equation. An integral equation, which can be solved by iterative procedure to find the wave functions, is established. We employ this approach to study the one-dimensional Dirac equation with one-well potential,and give the energy levels and wave functions up to the first order iterative approximation. For double-well potential,the energy levels up to the first order approximation are given. 展开更多
关键词 extended Wronskian determinant approach iteration method double-well potential
下载PDF
Exact Solutions to a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvilli Equation via the Bilinear Method and Wronskian Technique
9
作者 ZHANG Chcng TIAN Bo +4 位作者 XU Tao LI Li-Li Lü Xing GENG Tao ZHU Hong-Wu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第9期468-472,共5页
By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wave... By truncating the Painleve expansion at the constant level term,the Hirota bilinear form is obtainedfor a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation.Based on its bilinear form,solitary-wavesolutions are constructed via the ε-expansion method and the corresponding graphical analysis is given.Furthermore,the exact solution in the Wronskian form is presented and proved by direct substitution into the bilinear equation. 展开更多
关键词 (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation Wronskian solution bilinear form exact solution
下载PDF
AKNS方程的新双Wronski解 被引量:11
10
作者 陈登远 张大军 毕金钵 《中国科学(A辑)》 CSCD 北大核心 2007年第11期1335-1348,共14页
通过构造双Wronski行列式元素的矩阵方法,导出二阶AKNS方程的孤子解、有理解、Matveev解和Complexiton解,其中后三类解是新解,并借助约化求得非线性Schr(?)dinger方程的有理解.
关键词 AKNS方程 Wronski技巧 Wronsiki行列式
原文传递
2个位势的Ablowitz-Ladik等谱方程的Complexiton解
11
作者 陈守婷 张建兵 李琪 《数学的实践与认识》 北大核心 2020年第8期216-223,共8页
借助双Casoratian技巧和构造双Wronski行列式元素的矩阵方法,求出2个位势的Ablowitz-Ladik等谱方程的Complexiton解和周期解,并通过将矩阵取成不同的组合类型,进而分别得到该方程具有双Casorati行列式形式的新解,即Complexiton解与类有... 借助双Casoratian技巧和构造双Wronski行列式元素的矩阵方法,求出2个位势的Ablowitz-Ladik等谱方程的Complexiton解和周期解,并通过将矩阵取成不同的组合类型,进而分别得到该方程具有双Casorati行列式形式的新解,即Complexiton解与类有理解的混合解、Complexiton解与Matveev解的混合解. 展开更多
关键词 Ablowitz-Ladik等谱方程 Casorati行列式 Complexiton解 混合解
原文传递
Lump Solution of (2+1)-Dimensional Boussinesq Equation 被引量:5
12
作者 马彩虹 邓爱平 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第5期546-552,共7页
A class of lump solutions of(2+1)-dimensional Boussinesq equation are obtained with the help of Maple by using Hirota bilinear method.Some contour plots with different determinant values are sequentially made to show ... A class of lump solutions of(2+1)-dimensional Boussinesq equation are obtained with the help of Maple by using Hirota bilinear method.Some contour plots with different determinant values are sequentially made to show that the corresponding lump solution tends to zero when the determinant approaches zero.The particular lump solutions with specific values of the involved parameters are plotted,as illustrative examples. 展开更多
关键词 lump solution Boussinesq equation exact solution soliton Hirota bilinear method
原文传递
Extended Determinant Solution of a (3 + 1)-Dimensional KP Equation
13
作者 朱国庆 王红艳 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第4期409-414,共6页
In this paper, new extended Grammian determinant solutions to a (3 + 1)-dimensional KP equation are presented by using Hirora's bilinear method, and a broad set of suftlcient conditions of systems of linear partia... In this paper, new extended Grammian determinant solutions to a (3 + 1)-dimensional KP equation are presented by using Hirora's bilinear method, and a broad set of suftlcient conditions of systems of linear partial differential equations is given. Moreover, some special solutions of the representative systems are obtained through a systematic analysis. 展开更多
关键词 Grammian determinant (3 1)-dimensional KP pfaffian technique
原文传递
Determinant Solutions to a (3+1)-Dimensional Generalized KP Equation with Variable Coefficients 被引量:1
14
作者 Alrazi ABDELJABBAR Ahmet YILDIRIM 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第5期641-650,共10页
1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact ... 1 Introduction Although partial differential equations that govern the motion of solitons are nonlinear, many of them can be put into the bilinear form. Hirota, in 1971, developed an ingenious method to obtain exact solutions to nonlinear partial differential equations in the soliton theory, such as the KdV equation, the Boussinesq equation and the KP equation (see [1-2]). 展开更多
关键词 Hirota bilinear form Wronskian solution Grammian solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部