期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合多层卷积特征的双视点手势识别技术研究 被引量:8
1
作者 张哲 孙瑾 杨刘涛 《小型微型计算机系统》 CSCD 北大核心 2019年第3期646-650,共5页
在人机交互技术领域,基于视觉的手部交互技术凭借其良好的舒适性和自然性被广泛研究和应用.手势识别是手势交互技术的核心内容之一.本文提出一种基于深度学习网络的识别方法,构建双视点网络框架,采用支持向量机对各视点下提取的特征进... 在人机交互技术领域,基于视觉的手部交互技术凭借其良好的舒适性和自然性被广泛研究和应用.手势识别是手势交互技术的核心内容之一.本文提出一种基于深度学习网络的识别方法,构建双视点网络框架,采用支持向量机对各视点下提取的特征进行分类识别,降低手势自遮挡的影响,提高识别精度;同时对各视点卷积网络,根据训练样本卷积特征的累计贡献率实现不同深度层的卷积特征的融合,补充深层网络丢失的浅层特征信息,增强特征鲁棒性.实验结果表明,较传统方法本文方法能有效提高手势识别准确率,同时基于预训练的学习方法能有效提高手势识别的时间效率. 展开更多
关键词 人机交互 手势识别 深度学习 多层卷积特征 双视点深度学习网络 支持向量机分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部