期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于最优参数搜索的车辆中网识别方法研究 被引量:3
1
作者 郏东耀 艾艳可 黄轲 《电子与信息学报》 EI CSCD 北大核心 2014年第6期1321-1326,共6页
目前国内外车型识别方法中基于中网区域特征的研究较少,且分类识别的效率和精度较低。该文在分析中网格栅区域结构特征、中网窗口形状特征及区域纹理特征的基础上,提出基于最优参数搜索的改进型C参数的支持向量分类(C-SVC)车辆中网分类... 目前国内外车型识别方法中基于中网区域特征的研究较少,且分类识别的效率和精度较低。该文在分析中网格栅区域结构特征、中网窗口形状特征及区域纹理特征的基础上,提出基于最优参数搜索的改进型C参数的支持向量分类(C-SVC)车辆中网分类识别方法,该方法采用双角度约束以提高分类的效率和精度,即一方面设计基于马氏距离和"as-原则"对样本数据进行优化分选,并结合加权判别算法加快支持向量机的训练测试速度,以提高算法泛化效率;另一方面在核函数参数设定过程中,设计了基于先验知识的迭代最优参数搜索算法,以提高分类器的分类识别精度。实验表明,上述车辆中网识别方法检测准确率达到97.53%,具有精度高、误检率低的优点,同时极大优化分类识别效率,能够满足识别分类的实时性要求。 展开更多
关键词 车型识别 中网 双角度约束 特征参数 支持向量机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部