提出了一种根据接收正交频分复用(orthogonal frequency division multiplexing,OFDM)信号估计发射机IQ不平衡与非线性,并以此作为发射机指纹进行通信设备身份认证的方法.首先根据共轭对称导频估计多径信道脉冲响应,接着根据信道脉冲响...提出了一种根据接收正交频分复用(orthogonal frequency division multiplexing,OFDM)信号估计发射机IQ不平衡与非线性,并以此作为发射机指纹进行通信设备身份认证的方法.首先根据共轭对称导频估计多径信道脉冲响应,接着根据信道脉冲响应估计、共轭反对称导频与非线性功放的线性近似放大倍数估计发射机的IQ不平衡参数组合,然后进行发射机非线性的B-Spline神经网络模型系数估计,最后从非线性模型系数估计中提取相似因子,与IQ不平衡参数组合估计构成发射机指纹的特征矢量后进行通信设备身份的识别或确认.理论推导与数值仿真显示,该方法可用于OFDM通信设备的物理层高强度认证与防假冒等.展开更多
由于射频信号的广泛存在,合成孔径雷达(Synthetic Aperture Radar,SAR)在成像的过程中容易受到各类射频干扰(Radio Frequency Interference,RFI)的影响,这会导致获得的SAR图像质量下降,从而对后续的信息提取和目标识别等过程产生很大的...由于射频信号的广泛存在,合成孔径雷达(Synthetic Aperture Radar,SAR)在成像的过程中容易受到各类射频干扰(Radio Frequency Interference,RFI)的影响,这会导致获得的SAR图像质量下降,从而对后续的信息提取和目标识别等过程产生很大的影响。因此,衡量SAR图像受射频干扰的影响程度就尤为重要。然而,现有评估方法的鲁棒性通常较低,并且在评估时未考虑SAR图像受RFI影响的区域大小,因此本文提出了干扰区域⁃强度特征提取与联合评估网络。所提出的网络包含两个模块,干扰强度特征提取模块用于提取输入SAR图像中的干扰强度信息,干扰区域特征提取模块则侧重于干扰区域大小与边界信息的获取。由于SAR图像的尺寸一般比较大,因此本文在干扰强度特征提取模块中采用了多级残差和多层特征融合结构,用于加强模型的特征提取和复用能力;同时在干扰区域特征提取模块中侧重于保留最关键的区域边界特征。此外,本文还建立了SAR受RFI影响的图片数据集用于评估所提出网络的效果。对比实验的结果表明,本文所提出的网络评估结果优于其他现有方法,能够衡量SAR图像受RFI的影响程度,同时具有较高的准确性。展开更多
现有应用于射频指纹识别的卷积网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理都是将其简单视为图像进行的,存在识别准确率低和计算量大的问题。针对以上问题,提出了一种基于IQ相关特征的卷积神经网络结构。该网络分...现有应用于射频指纹识别的卷积网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理都是将其简单视为图像进行的,存在识别准确率低和计算量大的问题。针对以上问题,提出了一种基于IQ相关特征的卷积神经网络结构。该网络分步提取了IQ相关特征及时域特征,通过自适应平均池化获得了各通道特征均值,并用单个全连接层进行分类。实验结果表明,较传统卷积网络结构,所提网络在多种场景下的识别准确率更高,并且计算量更小。展开更多
使用10个LoRa设备和示波器在视距(line of sight,LOS)信道、非视距(non line of sight,NLOS)信道、有扰信道下进行了数据采集并构建了数据集。为了解决当输入为一维时序数据时坐标注意力(coordinate attention,CA)只能在时域上做特征增...使用10个LoRa设备和示波器在视距(line of sight,LOS)信道、非视距(non line of sight,NLOS)信道、有扰信道下进行了数据采集并构建了数据集。为了解决当输入为一维时序数据时坐标注意力(coordinate attention,CA)只能在时域上做特征增强,提出一种DCTCA机制,将输入特征图通过离散余弦变换(discrete cosine transform,DCT)由时域转换到频域以增强在频域上的特征,将时域上的特征图与频域上的注意力图融合实现多维度的特征增强。嵌入到由残差网络(residual network,ResNet)和门控循环网络(gated recurrent unit,GRU)级联的DRGNN网络进行射频指纹特征提取并完成识别。实验结果表明,在有扰信道下网络模型识别准确率可达79.2%,明显优于CNN1D的67.7%和LSTM的45.8%.。通过对比消融实验证明了DCTCA机制的有效性。展开更多
在射频指纹(radio frequency fingerprint,RFF)识别系统中,考虑到同一发射机的鲁棒性与不同发射机之间的差异性,提出了将瞬态信号二阶谱中的功率谱密度和互功率谱密度两个特征融合作为指纹的方法,并结合径向基概率神经网络分类器来进行...在射频指纹(radio frequency fingerprint,RFF)识别系统中,考虑到同一发射机的鲁棒性与不同发射机之间的差异性,提出了将瞬态信号二阶谱中的功率谱密度和互功率谱密度两个特征融合作为指纹的方法,并结合径向基概率神经网络分类器来进行分类.同时,对同一型号两个系列的多种无线网卡进行了分类检测,并与不同的特征提取方法和分类器进行了比较.结果表明,与已有方法相比,此方法的分类精确度有较大的提高.展开更多
文摘提出了一种根据接收正交频分复用(orthogonal frequency division multiplexing,OFDM)信号估计发射机IQ不平衡与非线性,并以此作为发射机指纹进行通信设备身份认证的方法.首先根据共轭对称导频估计多径信道脉冲响应,接着根据信道脉冲响应估计、共轭反对称导频与非线性功放的线性近似放大倍数估计发射机的IQ不平衡参数组合,然后进行发射机非线性的B-Spline神经网络模型系数估计,最后从非线性模型系数估计中提取相似因子,与IQ不平衡参数组合估计构成发射机指纹的特征矢量后进行通信设备身份的识别或确认.理论推导与数值仿真显示,该方法可用于OFDM通信设备的物理层高强度认证与防假冒等.
文摘由于射频信号的广泛存在,合成孔径雷达(Synthetic Aperture Radar,SAR)在成像的过程中容易受到各类射频干扰(Radio Frequency Interference,RFI)的影响,这会导致获得的SAR图像质量下降,从而对后续的信息提取和目标识别等过程产生很大的影响。因此,衡量SAR图像受射频干扰的影响程度就尤为重要。然而,现有评估方法的鲁棒性通常较低,并且在评估时未考虑SAR图像受RFI影响的区域大小,因此本文提出了干扰区域⁃强度特征提取与联合评估网络。所提出的网络包含两个模块,干扰强度特征提取模块用于提取输入SAR图像中的干扰强度信息,干扰区域特征提取模块则侧重于干扰区域大小与边界信息的获取。由于SAR图像的尺寸一般比较大,因此本文在干扰强度特征提取模块中采用了多级残差和多层特征融合结构,用于加强模型的特征提取和复用能力;同时在干扰区域特征提取模块中侧重于保留最关键的区域边界特征。此外,本文还建立了SAR受RFI影响的图片数据集用于评估所提出网络的效果。对比实验的结果表明,本文所提出的网络评估结果优于其他现有方法,能够衡量SAR图像受RFI的影响程度,同时具有较高的准确性。
文摘现有应用于射频指纹识别的卷积网络对时序同相正交(in-phase and quadrature-phase,IQ)信号的处理都是将其简单视为图像进行的,存在识别准确率低和计算量大的问题。针对以上问题,提出了一种基于IQ相关特征的卷积神经网络结构。该网络分步提取了IQ相关特征及时域特征,通过自适应平均池化获得了各通道特征均值,并用单个全连接层进行分类。实验结果表明,较传统卷积网络结构,所提网络在多种场景下的识别准确率更高,并且计算量更小。
文摘使用10个LoRa设备和示波器在视距(line of sight,LOS)信道、非视距(non line of sight,NLOS)信道、有扰信道下进行了数据采集并构建了数据集。为了解决当输入为一维时序数据时坐标注意力(coordinate attention,CA)只能在时域上做特征增强,提出一种DCTCA机制,将输入特征图通过离散余弦变换(discrete cosine transform,DCT)由时域转换到频域以增强在频域上的特征,将时域上的特征图与频域上的注意力图融合实现多维度的特征增强。嵌入到由残差网络(residual network,ResNet)和门控循环网络(gated recurrent unit,GRU)级联的DRGNN网络进行射频指纹特征提取并完成识别。实验结果表明,在有扰信道下网络模型识别准确率可达79.2%,明显优于CNN1D的67.7%和LSTM的45.8%.。通过对比消融实验证明了DCTCA机制的有效性。
文摘在射频指纹(radio frequency fingerprint,RFF)识别系统中,考虑到同一发射机的鲁棒性与不同发射机之间的差异性,提出了将瞬态信号二阶谱中的功率谱密度和互功率谱密度两个特征融合作为指纹的方法,并结合径向基概率神经网络分类器来进行分类.同时,对同一型号两个系列的多种无线网卡进行了分类检测,并与不同的特征提取方法和分类器进行了比较.结果表明,与已有方法相比,此方法的分类精确度有较大的提高.