在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由...在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由于特定领域文本的专业性和大标签数据集的不适用性,经济类文本情感分析给传统的情感分析模型带来了巨大的挑战.当将一般情感分析模型应用于经济等特定领域时,模型在准确率与召回率上表现较差.为了克服这些挑战,文章针对财经新闻平台上的经济类文本的情感分析任务,从词表示模型出发,提出了基于知识蒸馏方法的双路BERT(Two-way BERT based on knowledge distillation method)情感分析模型,与文本卷积神经网络(Text-CNN)、卷积递归神经网络(CRNN)、双向长时和短时记忆网络(Bi-LSTM)等算法进行对比实验,结果得出该改进方法相较于其他算法在准确率、召回率和F1值均提升了1%~3%,具有较好的泛化性能.展开更多
文摘在互联网时代,越来越多的财务公司选择在财经新闻平台上发表自己的见解,这些评论文本作为舆情的载体,可以充分反映财务公司的情绪,影响公众的投资决策和市场走势.情感分析为分析海量的经济类文本情感类型提供了有效的研究手段.但是,由于特定领域文本的专业性和大标签数据集的不适用性,经济类文本情感分析给传统的情感分析模型带来了巨大的挑战.当将一般情感分析模型应用于经济等特定领域时,模型在准确率与召回率上表现较差.为了克服这些挑战,文章针对财经新闻平台上的经济类文本的情感分析任务,从词表示模型出发,提出了基于知识蒸馏方法的双路BERT(Two-way BERT based on knowledge distillation method)情感分析模型,与文本卷积神经网络(Text-CNN)、卷积递归神经网络(CRNN)、双向长时和短时记忆网络(Bi-LSTM)等算法进行对比实验,结果得出该改进方法相较于其他算法在准确率、召回率和F1值均提升了1%~3%,具有较好的泛化性能.