We have performed Monte Carlo simulations of the rotation of single stars and companions of compact objects(The compact objects are white dwarfs(WDs) and neutron stars(NSs)) in close binaries.We present a comparison b...We have performed Monte Carlo simulations of the rotation of single stars and companions of compact objects(The compact objects are white dwarfs(WDs) and neutron stars(NSs)) in close binaries.We present a comparison between the rotation of companions of compact objects and that of single stars.We find that the rotation of the companions of compact objects is on average faster than that of the single stars.According to the distribution of the orbital period and the rotation angular velocity,we find that the rotation of the companions of compact objects is mostly accelerated by stable mass transfer.Tidal forces of the compact object can also affect the rotation of companion.展开更多
During the evolution of the binary system, many physical processes occur, which can influence the orbital angular velocity and the spin angular velocities of the two components, and influence the non-synchronous or sy...During the evolution of the binary system, many physical processes occur, which can influence the orbital angular velocity and the spin angular velocities of the two components, and influence the non-synchronous or synchronous rotation of the system. These processes include the transfer of masses and angular momentums between the component stars, the loss of mass and angular momentum via stellar winds, and the deformation of the structure of component stars. A study of these processes indicates that they are closely related to the combined effects of tide and rotation. This means, to study the synchronous or non-synchronous rotation of binary systems, one has to consider the contributions of different physical processes simultaneously, instead of the tidal effect alone. A way to know whether the rotation of a binary system is synchronous or non-synchronous is to calculate the orbital angular velocity and the spin angular velocities of the component stars. If all of these angular velocities are equal, the rotation of the system is synchronous. If not, the rotation of the system is non-synchronous. For this aim, a series of equations are developed to calculate the orbital and spin angular velocities. The evolutionary calculation of a binary system with masses of 10M~ + 6Me shows that the transfer of masses and angular momentums between the two components, and the deformation of the components structure in the semidetached or in the contact phase can change the rotation of the system from synchronous into non-synchronous rotation.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 11163005)the Natural Science Foundation of Xinjiang(Grant No. 2009211B01)the Foundation of Huoyingdong (Grant No.121107)
文摘We have performed Monte Carlo simulations of the rotation of single stars and companions of compact objects(The compact objects are white dwarfs(WDs) and neutron stars(NSs)) in close binaries.We present a comparison between the rotation of companions of compact objects and that of single stars.We find that the rotation of the companions of compact objects is on average faster than that of the single stars.According to the distribution of the orbital period and the rotation angular velocity,we find that the rotation of the companions of compact objects is mostly accelerated by stable mass transfer.Tidal forces of the compact object can also affect the rotation of companion.
基金supported by the National Natural Science Foundation of China(Grant No.10933002)
文摘During the evolution of the binary system, many physical processes occur, which can influence the orbital angular velocity and the spin angular velocities of the two components, and influence the non-synchronous or synchronous rotation of the system. These processes include the transfer of masses and angular momentums between the component stars, the loss of mass and angular momentum via stellar winds, and the deformation of the structure of component stars. A study of these processes indicates that they are closely related to the combined effects of tide and rotation. This means, to study the synchronous or non-synchronous rotation of binary systems, one has to consider the contributions of different physical processes simultaneously, instead of the tidal effect alone. A way to know whether the rotation of a binary system is synchronous or non-synchronous is to calculate the orbital angular velocity and the spin angular velocities of the component stars. If all of these angular velocities are equal, the rotation of the system is synchronous. If not, the rotation of the system is non-synchronous. For this aim, a series of equations are developed to calculate the orbital and spin angular velocities. The evolutionary calculation of a binary system with masses of 10M~ + 6Me shows that the transfer of masses and angular momentums between the two components, and the deformation of the components structure in the semidetached or in the contact phase can change the rotation of the system from synchronous into non-synchronous rotation.