随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep ...随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。展开更多
双谱是处理非线性、非高斯性信号的有力工具,而支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。基于此,提出一种基于双谱和SVDD相结合的故障智能诊断方法。该方法...双谱是处理非线性、非高斯性信号的有力工具,而支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。基于此,提出一种基于双谱和SVDD相结合的故障智能诊断方法。该方法采用双谱对振动信号进行处理并提取特征向量,以此作为SVDD的输入参数进行训练和分类。将该方法应用于滚动轴承的故障诊断中,结果表明,该方法可以有效提取轴承信号的特征信息,提高SVDD在故障诊断中的准确性。展开更多
文摘随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。
文摘双谱是处理非线性、非高斯性信号的有力工具,而支持向量数据描述(support vector data description,SVDD)是一种单值分类方法,可以解决故障诊断中故障样本缺乏的问题。基于此,提出一种基于双谱和SVDD相结合的故障智能诊断方法。该方法采用双谱对振动信号进行处理并提取特征向量,以此作为SVDD的输入参数进行训练和分类。将该方法应用于滚动轴承的故障诊断中,结果表明,该方法可以有效提取轴承信号的特征信息,提高SVDD在故障诊断中的准确性。