期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
基于双通道时频卷积神经网络的故障电弧检测
1
作者 向泽林 杨洋 +1 位作者 李平 阳世群 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期192-202,共11页
交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的... 交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的技术难以全面概括故障电弧的特征,而大多数基于深度神经网络的方法直接对电流信号进行特征学习,忽略了信号中的频率信息,从而导致泛化能力差的问题.对此,本文提出了基于时频特征学习的双通道时频卷积神经网络的故障电弧识别方法,设计了可学习的自适应离散小波变换,用于提取一维信号中的多尺度特征,同时通过短时傅里叶变换获取二维的时频图像特征,分别在这2种特征信号上进行卷积,最后将2个通道中学习的特征进行融合,用于分类预测.通过对故障电弧发生器采集到的3种工况下电弧电流信号进行性能评估,验证所提方法的有效性.实验结果表明,该方法与其他同类方法相比具有更高的电弧识别准确率,达到了97.91%. 展开更多
关键词 故障电弧 特征融合 双通道时频卷积神经网络 自适应离散小波分解 傅立叶变换
下载PDF
基于双通道交叉融合的卷积神经网络图像识别方法研究
2
作者 黄曼曼 王松林 +1 位作者 周正贵 侯秀丽 《现代信息科技》 2024年第12期47-51,55,共6页
针对单通道卷积神经网络的特征提取不够充分、深度网络存在训练困难的问题,提出一种双通道交叉融合的卷积神经网络模型。该模型包括三个特征提取阶段,每个阶段分两条通道进行图像卷积,当两条通道的卷积结束后进行特征交叉融合,经过三次... 针对单通道卷积神经网络的特征提取不够充分、深度网络存在训练困难的问题,提出一种双通道交叉融合的卷积神经网络模型。该模型包括三个特征提取阶段,每个阶段分两条通道进行图像卷积,当两条通道的卷积结束后进行特征交叉融合,经过三次交叉融合后输入到全局平均池化层以及全连接层中得到分类结果。将该模型应用于Cifar10、Cifar100和Fashion-MNIST的图像分类任务以验证模型的有效性。结果表明,双通道交叉融合模型可以在当前支持GPU加速的主流笔记本电脑上进行训练,在同样规模的数据集上具有比同类其他模型更好的分类性能。 展开更多
关键词 卷积神经网络 通道 融合 分类 准确率
下载PDF
基于时频图与双通道卷积神经网络的轴承故障识别模型 被引量:1
3
作者 张政君 井陆阳 +2 位作者 徐卫晓 战卫侠 王晓昆 《机电工程》 CAS 北大核心 2023年第12期1889-1897,共9页
采用传统的信号处理方法难以从轴承振动信号中提取能全面准确反映轴承运行状态的故障特征,并且实际工程中采集的数据量难以满足深度学习方法的要求(需要较大数据量),针对这些问题,提出了一种基于时频图与双通道卷积神经网络(CNN)的轴承... 采用传统的信号处理方法难以从轴承振动信号中提取能全面准确反映轴承运行状态的故障特征,并且实际工程中采集的数据量难以满足深度学习方法的要求(需要较大数据量),针对这些问题,提出了一种基于时频图与双通道卷积神经网络(CNN)的轴承故障识别模型(方法)。首先,基于样本熵和峭度,构造了新的目标函数,利用灰狼优化算法(GWO)对变分模态分解(VMD)方法进行了参数优化,当目标函数达到最小值时,得到了其最优参数组合;然后,使用经过参数优化后的变分模态分解(VMD)方法对轴承信号进行了处理,将处理后得到的模态分量进行了平滑伪Wigner Ville分布(SPWVD)计算,累加其计算结果后,最终得到了轴承的时频图;其次,利用连续小波变换(CWT)直接对原始信号处理得到了时频图;最后,将采用两种方式得到的时频图分别作为双通道CNN的输入,对网络进行了训练,由CNN提取了其时频图特征,并对轴承故障进行了识别分类和诊断。实验结果表明:采用该方法在轴承故障实验中得到的准确率为99.69%,在10次实验中的平均准确率达到了99.61%,相比于单通道CNN和支持向量机(SVM)等方法,该方法有着更高的准确率和更出色的稳定性。研究结果表明:将该方法应用在轴承故障诊断领域,具有准确率高、稳定性强的特点,能够有效地诊断轴承故障。 展开更多
关键词 时频分析方法 变分模态分解 平滑伪Wigner-Ville分布 连续小波变换 通道卷积神经网络 灰狼优化算法
下载PDF
双通道卷积神经网络在影像融合中的应用 被引量:1
4
作者 靳道明 李路沙 《地理空间信息》 2023年第11期1-4,共4页
利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提... 利用Landsat8遥感卫星影像数据制作影像融合数据集,提出了一种双通道融合网络,并利用结果影像的质量指数对网络融合性能进行评估,分析与双三次卷积插值和GS影像融合方法的差异。结果表明,该网络加强了对高频空间信息的提取,在更高效提取空间特征的同时,减弱了融合过程中对多光谱影像光谱特征的影响,从而提高了融合影像的综合影像质量(QNR=0.8852)。 展开更多
关键词 深度学习 遥感影像融合 通道卷积神经网络 多尺度特征
下载PDF
基于双通道卷积神经网络算法的视频处理超分辨率增强方法
5
作者 唐天聪 《信息与电脑》 2023年第2期194-196,共3页
为提高视频清晰度,引进双通道卷积神经网络算法,设计了一种针对视频处理过程的超分辨率增强方法。将视频录入计算机,建立视频信息与输入特征之间的级联关系,提取视频处理中的图像边缘纹理信息;引进双通道卷积神经网络算法,使用3×3... 为提高视频清晰度,引进双通道卷积神经网络算法,设计了一种针对视频处理过程的超分辨率增强方法。将视频录入计算机,建立视频信息与输入特征之间的级联关系,提取视频处理中的图像边缘纹理信息;引进双通道卷积神经网络算法,使用3×3的滤波处理器,提取视频特征信息,将提取的信息映射到双通道3×3区域中,匹配视频的矢量信息;引进Pair-wise模型将输入的低分辨率图像作为模型的分支,通过训练分支得到一个针对处理视频特征的字典,并据此生成高分辨率图像块。实验结果证明,设计方法可以在提高视频清晰度的同时,提高视频峰值信噪比,达到优化视频处理效果的目的。 展开更多
关键词 通道 卷积神经网络算法 视频处理 边缘纹理 增强方法 超分辨率
下载PDF
基于双通道卷积神经网络的航班延误预测模型 被引量:28
6
作者 吴仁彪 李佳怡 屈景怡 《计算机应用》 CSCD 北大核心 2018年第7期2100-2106,2112,共8页
针对航班延误预测数据量大、特征提取困难而传统算法处理能力有限的问题,提出一种基于双通道卷积神经网络(DCNN)的航班延误预测模型。首先,该模型将航班数据和气象数据进行融合,应用DCNN进行自动特征提取,采用批归一化(BN)和Padding策... 针对航班延误预测数据量大、特征提取困难而传统算法处理能力有限的问题,提出一种基于双通道卷积神经网络(DCNN)的航班延误预测模型。首先,该模型将航班数据和气象数据进行融合,应用DCNN进行自动特征提取,采用批归一化(BN)和Padding策略优化,提升到港延误等级的分类预测性能;然后,在卷积神经网络(CNN)基础上加入直通通道,以保证特征矩阵的无损传输,增强深度网络的畅通性;同时引入卷积衰减因子对卷积通道的特征矩阵进行稀疏性限制,控制不同网络深度的特征叠加比例,维持模型的稳定性。实验结果表明,所提模型与传统模型相比,具有更强的数据处理能力。通过数据融合,航班延误预测准确率可提高1个百分点;加深网络深度后,该模型能保证梯度的稳定,从而训练更深的网络,使准确率提升至92.1%。该基于DCNN算法的模型特征提取充分,预测性能优于对比模型,可更好地服务于民航决策。 展开更多
关键词 航班延误预测 通道卷积神经网络 数据融合 直通通道 卷积衰减因子
下载PDF
基于双通道卷积神经网络的多标签图像标注 被引量:6
7
作者 陈立潮 武晨燕 +2 位作者 曹建芳 潘理虎 张英俊 《计算机工程与设计》 北大核心 2019年第12期3601-3607,共7页
针对图像语义标注中存在的训练样本不均衡导致低频标注词标注准确率低的问题,提出一种双通道卷积神经网络模型(double channel convolution neural network,DCCNN)。其中一个通道是为训练低频样本设立的,以此提高低频样本在整个模型中... 针对图像语义标注中存在的训练样本不均衡导致低频标注词标注准确率低的问题,提出一种双通道卷积神经网络模型(double channel convolution neural network,DCCNN)。其中一个通道是为训练低频样本设立的,以此提高低频样本在整个模型中所占比重,另一个通道用于训练全部的训练集。在标注过程中把两个通道的输出进行融合,对所需标注的标注词共同做出决策。在Pascal VOC2012标准数据集上对模型进行验证,实验结果表明,DCCNN模型相对于卷积神经网络(convolution neural network,CNN)无论是对低频标注词的标注准确率还是效率都有很大的提升,验证了该模型的有效性。 展开更多
关键词 图像标注 卷积神经网络 样本不均衡 多标签 通道卷积神经网络
下载PDF
应用双通道卷积神经网络的地震随机噪声压制方法 被引量:7
8
作者 徐彦凯 刘曾梅 +1 位作者 薛亚茹 曹思远 《石油地球物理勘探》 EI CSCD 北大核心 2022年第4期747-756,I0001,共11页
地震资料中随机噪声的压制一直是人们关注的热点。传统方法难以平衡噪声的去除与有效信号的保护,且执行效率低。为此,提出了基于双通道卷积神经网络的随机噪声压制方法。首先,该网络是一个双通道网络,即由两个结构不同的子网络组成,目... 地震资料中随机噪声的压制一直是人们关注的热点。传统方法难以平衡噪声的去除与有效信号的保护,且执行效率低。为此,提出了基于双通道卷积神经网络的随机噪声压制方法。首先,该网络是一个双通道网络,即由两个结构不同的子网络组成,目的是在压制噪声过程中提取到互补有效信息;其次,在下通道子网络中引入空洞卷积增大感受野,充分捕捉到地震资料中的邻域信息,从而更充分地保留细节信息;最后,借鉴残差学习的思想并使用Swish激活函数,提高了网络的降噪性能。模型和实际资料的实验结果表明,所提方法在有效地压制随机噪声的同时能够保留更丰富的纹理细节信息。 展开更多
关键词 地震资料 随机噪声 通道卷积神经网络 空洞卷积 激活函数
下载PDF
基于双通道空洞卷积神经网络的手势识别 被引量:5
9
作者 孙进 张道周 +2 位作者 张洋 习俊通 朱兴龙 《传感器与微系统》 CSCD 北大核心 2022年第3期126-128,共3页
为了提高手势识别过程中识别率,提出了一种基于双通道卷积神经网络(CNN)的识别算法。首先,对原始手势图像进行预处理,得到手部边缘图像;然后,分别选取手势图像和手部边缘图像作为CNN的两个输入通道;最后,在全连接层进行特征融合,并用Sof... 为了提高手势识别过程中识别率,提出了一种基于双通道卷积神经网络(CNN)的识别算法。首先,对原始手势图像进行预处理,得到手部边缘图像;然后,分别选取手势图像和手部边缘图像作为CNN的两个输入通道;最后,在全连接层进行特征融合,并用SoftMax分类器对输出结果进行分类。通过实验证明:该算法能有效提高手势识别率,达到99.6%,增强了CNN的泛化能力。 展开更多
关键词 通道 空洞卷积 神经网络 手势识别
下载PDF
基于视频分段的空时双通道卷积神经网络的行为识别 被引量:8
10
作者 王萍 庞文浩 《计算机应用》 CSCD 北大核心 2019年第7期2081-2086,共6页
针对原始空时双通道卷积神经网络(CNN)模型对长时段复杂视频中行为识别率低的问题,提出了一种基于视频分段的空时双通道卷积神经网络的行为识别方法。首先将视频分成多个等长不重叠的分段,对每个分段随机采样得到代表视频静态特征的帧... 针对原始空时双通道卷积神经网络(CNN)模型对长时段复杂视频中行为识别率低的问题,提出了一种基于视频分段的空时双通道卷积神经网络的行为识别方法。首先将视频分成多个等长不重叠的分段,对每个分段随机采样得到代表视频静态特征的帧图像和代表运动特征的堆叠光流图像;然后将这两种图像分别输入到空域和时域卷积神经网络进行特征提取,再在两个通道分别融合各视频分段特征得到空域和时域的类别预测特征;最后集成双通道的预测特征得到视频行为识别结果。通过实验讨论了多种数据增强方法和迁移学习方案以解决训练样本不足导致的过拟合问题,分析了不同分段数、预训练网络、分段特征融合方案和双通道集成策略对行为识别性能的影响。实验结果显示所提模型在UCF101数据集上的行为识别准确率达到91.80%,比原始的双通道模型提高了3.8个百分点;同时在HMDB51数据集上的行为识别准确率也比原模型提高,达到61.39%,这表明所提模型能够更好地学习和表达长时段复杂视频中人体行为特征。 展开更多
关键词 通道卷积神经网络 行为识别 视频分段 迁移学习 特征融合
下载PDF
密集结构改进双通道神经网络的遥感图像配准
11
作者 王东振 陈颖 +1 位作者 李文举 李绩鹏 《计算机应用与软件》 北大核心 2023年第7期229-237,318,共10页
针对部分传统算法对于遥感图像配准精度较低的问题,提出一种密集结构改进双通道卷积神经网络的遥感图像配准方法。对输入的图像采用密集结构改进的双通道卷积神经网络模型进行特征提取;用粒子群算法改进的随机一致性点漂移算法进行特征... 针对部分传统算法对于遥感图像配准精度较低的问题,提出一种密集结构改进双通道卷积神经网络的遥感图像配准方法。对输入的图像采用密集结构改进的双通道卷积神经网络模型进行特征提取;用粒子群算法改进的随机一致性点漂移算法进行特征匹配得到仿射变换系数;使待配准图像能够根据该系数实现变换,达到配准目的。实验表明,改进算法比传统算法的配准精度平均提高了15%以上,对具有显著地貌差异的遥感图像对的配准精度可以有效地提高。 展开更多
关键词 遥感图像 图像配准 密集结构 通道卷积神经网络 一致性点漂移
下载PDF
面向表情识别的双通道卷积卷积神经网络 被引量:4
12
作者 文元美 欧阳文 凌永权 《计算机工程与设计》 北大核心 2019年第7期2046-2051,共6页
针对融合卷积神经网络学习到的低层次特征与高层次特征进行表情识别时参数过多的问题,提出面向表情识别任务的双通道卷积卷积神经网络。将池化层池化得到的特征图分为上下两路进行卷积,上路特征图采用1×1卷积核进行卷积得到低层次... 针对融合卷积神经网络学习到的低层次特征与高层次特征进行表情识别时参数过多的问题,提出面向表情识别任务的双通道卷积卷积神经网络。将池化层池化得到的特征图分为上下两路进行卷积,上路特征图采用1×1卷积核进行卷积得到低层次特征值,下路特征图输入到下一卷积层中学习高层次特征,将高层次特征与各层的低层次特征相融合后输入分类器进行分类。多个表情数据集实验结果表明,所提方法在保证识别精度的前提下有效减少了特征融合后的参数量。 展开更多
关键词 表情识别 卷积神经网络 特征融合 通道卷积 降维
下载PDF
采用双通道卷积神经网络构建的随机脉冲噪声深度降噪模型 被引量:1
13
作者 徐少平 林珍玉 +2 位作者 崔燕 刘蕊蕊 杨晓辉 《电子与信息学报》 EI CSCD 北大核心 2020年第10期2541-2548,共8页
为提高对随机脉冲噪声(RVIN)图像的降噪效果,该文提出一种被称为双通道降噪卷积神经网络(D-DnCNN)的RVIN深度降噪模型。首先,提取多个不同阶对数差值排序(ROLD)统计值及1个边缘特征统计值构成描述图块中心像素点是否为RVIN噪声的噪声感... 为提高对随机脉冲噪声(RVIN)图像的降噪效果,该文提出一种被称为双通道降噪卷积神经网络(D-DnCNN)的RVIN深度降噪模型。首先,提取多个不同阶对数差值排序(ROLD)统计值及1个边缘特征统计值构成描述图块中心像素点是否为RVIN噪声的噪声感知特征矢量。其次,利用预先训练好的深度置信网络(DBN)预测模型实现特征矢量到噪声标签的映射,完成对噪声图像中噪声点的检测。再次,在噪声检测标签的指示下采用Delaunay三角剖分插值算法快速修复噪声像素点从而获得初步复原图像。最后,将初步复原图像作为参考图像与噪声图像联接(concatenate)后输入D-DnCNN模型后获得残差图像,将参考图像减去残差图像即可获得降噪后图像。实验数据表明:D-DnCNN模型在各个噪声比例下的降噪效果均显著超过了现有的经典开关型RVIN降噪算法,与普通的单通道RVIN深度降噪模型相比也有较大幅度提升。 展开更多
关键词 图像处理 随机脉冲噪声 通道降噪卷积神经网络 参考图像 噪声感知特征 噪声检测 插值
下载PDF
基于高低维度特征融合的双通道卷积神经网络 被引量:1
14
作者 文元美 罗志鹏 凌永权 《计算机与现代化》 2018年第12期101-105,共5页
为了充分利用图像中所隐藏的特征信息,提出将低级维度特征融合在全连接层,构建出融合了高低级维度特征的双通道卷积神经网络。首先构建一个传统的双通道卷积神经网络,在两通道上设置不同大小的卷积核,将双通道的池化层分别连接到全连接... 为了充分利用图像中所隐藏的特征信息,提出将低级维度特征融合在全连接层,构建出融合了高低级维度特征的双通道卷积神经网络。首先构建一个传统的双通道卷积神经网络,在两通道上设置不同大小的卷积核,将双通道的池化层分别连接到全连接层,同时将两通道卷积神经网络的第一池化层提取的特征也直接送到全连接层,使提取得到的初级和高级特征图在全连接层上进行融合,融合后的数据输入到Softmax分类器进行分类。不同算法在fashion-mnist和CIFAR-10数据库上的对比仿真结果表明,本文模型获得了较高的分类准确率。 展开更多
关键词 特征融合 通道卷积神经网络 卷积 池化层
下载PDF
双通道卷积神经网络在静态手势识别中的应用 被引量:13
15
作者 冯家文 张立民 邓向阳 《计算机工程与应用》 CSCD 北大核心 2018年第14期148-152,162,共6页
针对静态手势识别任务中,传统基于人工提取特征方法耗时耗力,识别率较低,现有卷积神经网络依赖单一卷积核提取特征不够充分的问题,提出双通道卷积神经网络模型。输入手势图片通过两个相互独立的通道进行特征提取,双通道具有尺度不同的... 针对静态手势识别任务中,传统基于人工提取特征方法耗时耗力,识别率较低,现有卷积神经网络依赖单一卷积核提取特征不够充分的问题,提出双通道卷积神经网络模型。输入手势图片通过两个相互独立的通道进行特征提取,双通道具有尺度不同的卷积核,能够提取输入图像中不同尺度的特征,然后在全连接层进行特征融合,最后经过softmax分类器进行分类。在Thomas Moeslund和Jochen Triesch手势数据库上进行实验验证,结果表明该模型提高了静态手势识别的准确率,增强了卷积神经网络的泛化能力。 展开更多
关键词 静态手势识别 卷积神经网络 通道 卷积
下载PDF
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建 被引量:8
16
作者 于淑侠 胡良梅 +1 位作者 张骏 张旭东 《计算机应用研究》 CSCD 北大核心 2020年第8期2541-2546,共6页
针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不... 针对深度图像分辨率低的问题,构建了一种金字塔式双通道深度图像超分辨率卷积神经网络。在金字塔的每一级,通过两个通道对低分辨率深度图像提取不同的有效特征,通道1为增强型残差结构,可以将丰富的图像细节传递到后面的图层,通道2将不同卷积层提取的特征连接起来作为此通道最后一层卷积层的输入,有益于局部特征和全局特征的结合。接着,通过将不同通道融合后的特征输入亚像素卷积实现超分辨率重建。实验结果表明,相比其他方法,该方法得到的超分辨率图像缓解了边缘失真和伪影问题,有较好的视觉效果。 展开更多
关键词 深度图像 超分辨率重建 通道卷积神经网络 金字塔式网络结构
下载PDF
基于双通道卷积神经网络的交通标志识别算法 被引量:5
17
作者 孔月瑶 严群 +1 位作者 姚剑敏 林志贤 《传感器与微系统》 CSCD 北大核心 2021年第7期138-141,共4页
针对交通标志图像易受复杂背景、光照、运动模糊等影响导致识别率低和识别速度慢的问题,提出了基于非对称双通道卷积神经网络的交通标志识别方法。通过不同网络结构的两通路提取丰富的特征信息,上层通路使用跃层连接提取的浅层局部特征... 针对交通标志图像易受复杂背景、光照、运动模糊等影响导致识别率低和识别速度慢的问题,提出了基于非对称双通道卷积神经网络的交通标志识别方法。通过不同网络结构的两通路提取丰富的特征信息,上层通路使用跃层连接提取的浅层局部特征和深层全局特征,与下层通路提取的精细特征在全连接层进行融合,并使用激活函数LReLUs代替脆弱的ReLU,提高准确率。将实验结果与其他算法进行比较,证明所提算法的识别率和识别速度均优于其他算法,具有一定的先进性和鲁棒性。 展开更多
关键词 卷积神经网络 交通标志识别 通道卷积 特征融合
下载PDF
基于双通道卷积神经网络的视频目标移除取证算法 被引量:3
18
作者 白珊山 倪蓉蓉 赵耀 《信号处理》 CSCD 北大核心 2020年第9期1415-1421,共7页
针对现有数字视频目标移除取证算法的伪造帧识别准确率低的问题,本文提出了一种基于双通道卷积神经网络的视频目标移除取证算法。该算法利用双通道结构,分别提取视频绝对帧差图像的RGB特征和噪声特征,并利用双线性池化对二者进行特征融... 针对现有数字视频目标移除取证算法的伪造帧识别准确率低的问题,本文提出了一种基于双通道卷积神经网络的视频目标移除取证算法。该算法利用双通道结构,分别提取视频绝对帧差图像的RGB特征和噪声特征,并利用双线性池化对二者进行特征融合,而后通过分类层输出视频帧的分类结果,从而有效地识别经过篡改的视频帧。其中,RGB通道能够发现绝对帧差图像中不自然的篡改边界和对比度,噪声通道能够发现原始区域和篡改区域之间噪声的不一致性。此外,算法在网络前端增加了预处理层来放大篡改视频帧的伪造痕迹。实验结果显示,所提算法有效地提高了伪造视频帧的识别准确率,且相对于传统的单通道网络结构,双通道特征融合的方式取得了更好的检测性能。 展开更多
关键词 数字视频取证 视频目标移除取证 通道卷积神经网络 Inception-v3网络
下载PDF
双通道深度卷积神经网络的航空发动机剩余使用寿命预测方法 被引量:3
19
作者 苗青林 张晓丰 +2 位作者 高杨军 刘显光 秦丕胜 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2022年第2期12-18,共7页
提出了一种基于双通道的深度卷积神经网络方法,用来预测航空发动机剩余使用寿命。该方法在传统卷积神经网络上,应用最大信息系数进行数据降维、卡尔曼滤波进行数据降噪;通过数据切片,将数据片标签设置为最后一个循环的剩余使用寿命,实... 提出了一种基于双通道的深度卷积神经网络方法,用来预测航空发动机剩余使用寿命。该方法在传统卷积神经网络上,应用最大信息系数进行数据降维、卡尔曼滤波进行数据降噪;通过数据切片,将数据片标签设置为最后一个循环的剩余使用寿命,实现数据重构;引入分段和线性剩余使用寿命衰减模型,并给出了寿命衰减起始点判断方法;将寿命衰减前、寿命衰减中2种特征作为双通道网络模型的输入。在NASA涡轮风扇发动机仿真数据集(C-MAPSS)上测试结果显示,在测试数据范围较大时,该方法相关指标明显优于其他方法,在航空发动机剩余寿命预测上具有显著优势。 展开更多
关键词 航空发动机 剩余使用寿命 深度卷积神经网络 通道 最大相关系数
下载PDF
基于依存关系和双通道卷积神经网络关系抽取方法 被引量:4
20
作者 吴佳昌 吴观茂 《计算机应用与软件》 北大核心 2019年第4期241-246,267,共7页
关系抽取是自然语言中的一项重要任务,其结果对后续的信息抽取和自动问答系统有重要的影响。随着深度学习的日益火热,基于卷积神经网络的实体关系抽取已取得了不错的结果。不过词向量表示比较单一,提取的特征也有限。针对这个问题,将Wor... 关系抽取是自然语言中的一项重要任务,其结果对后续的信息抽取和自动问答系统有重要的影响。随着深度学习的日益火热,基于卷积神经网络的实体关系抽取已取得了不错的结果。不过词向量表示比较单一,提取的特征也有限。针对这个问题,将Word2vec训练的词向量和由自然语言处理工具得出的依存关系对分别作为模型两通道的输入向量,使用双通道卷积神经网络提取特征来实现实体关系抽取。该模型可以提取更深层的语义信息,并取得了比传统词向量更好的效果。 展开更多
关键词 关系抽取 依存关系 卷积神经网络 通道
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部