We theoretically investigate a device consisting of two quantum dots (QDs) side-coupled to a quantum wire which has many physical ingredients of an artificial heavy fermion system. An extra parameter, the distance L...We theoretically investigate a device consisting of two quantum dots (QDs) side-coupled to a quantum wire which has many physical ingredients of an artificial heavy fermion system. An extra parameter, the distance L between the two QDs, is introduced and it plays an important role on the competition of the Kondo temperature and magnetic coupling. Three different phases are found: antiferromagnetic phase, Kondo phase with spin S = 1/2, and Kondo phase with S = 1, depending on the distance L, the magnetic properties are qualitatively different for different phases: conductance tends to the unitary value 2e2 /h; for the S : the distance. coupling, and the Kondo temperature. Quantum transport for the S = 1 Kondo and the antiferromagnetic phases, the 1/2 Kondo phase the conductance is strongly dependent onthe distance.展开更多
基金supported by National Science Foundation of China under Grant Nos.10974236 and 11074174
文摘We theoretically investigate a device consisting of two quantum dots (QDs) side-coupled to a quantum wire which has many physical ingredients of an artificial heavy fermion system. An extra parameter, the distance L between the two QDs, is introduced and it plays an important role on the competition of the Kondo temperature and magnetic coupling. Three different phases are found: antiferromagnetic phase, Kondo phase with spin S = 1/2, and Kondo phase with S = 1, depending on the distance L, the magnetic properties are qualitatively different for different phases: conductance tends to the unitary value 2e2 /h; for the S : the distance. coupling, and the Kondo temperature. Quantum transport for the S = 1 Kondo and the antiferromagnetic phases, the 1/2 Kondo phase the conductance is strongly dependent onthe distance.