期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双重注意力残差网络的偏振图像超分辨率重建 被引量:1
1
作者 徐国明 王杰 +3 位作者 马健 王勇 刘佳庆 李毅 《光子学报》 EI CAS CSCD 北大核心 2022年第4期295-309,共15页
在利用深度学习进行偏振图像计算成像过程中,图像映射函数的解空间极大、空间分辨率一般较低,难以生成清晰的纹理细节且存在高频信息缺失等问题。为解决该问题,提出一种结合双注意力机制的深度残差偏振图像超分辨率网络。该网络由一个... 在利用深度学习进行偏振图像计算成像过程中,图像映射函数的解空间极大、空间分辨率一般较低,难以生成清晰的纹理细节且存在高频信息缺失等问题。为解决该问题,提出一种结合双注意力机制的深度残差偏振图像超分辨率网络。该网络由一个具有全局跳跃连接的残差网络组成,包含10个残差组,每个残差组包含20个具有局部跳跃连接的双重注意力块级联的残差块;同时考虑通道间的相互依赖性,设计自适应通道特征调整机制;引入级联的空间注意力块,将残差的特征更集中于关键的空间内容。将所提方法与Bicubic、SRCNN、FSRCNN、EDSR等方法进行对照实验与成像系统对比校正实验,结果表明该方法重建图像纹理细节更加丰富,亮度均匀,较为接近成像系统的高清图像,同时峰值信噪比和结构相似性指标优于其他方法但参数量仅约为EDSR的2/5。 展开更多
关键词 计算成像 超分辨率 深度残差网络 偏振图像 双重注意力块
下载PDF
基于改进Faster R-CNN的纸病检测算法 被引量:4
2
作者 汤伟 王锦韫 张龙 《包装工程》 CAS 北大核心 2023年第21期260-266,共7页
目的达到纸病检测中能够充分提取纸病特征、提高检测精度、降低小目标漏检率的目标。方法基于Faster R-CNN的检测算法进行改进,主要改进的做法是利用深度残差网络ResNet-50替换原模型的骨干特征提取网络VGG16,以保留更多的纸病特征信息... 目的达到纸病检测中能够充分提取纸病特征、提高检测精度、降低小目标漏检率的目标。方法基于Faster R-CNN的检测算法进行改进,主要改进的做法是利用深度残差网络ResNet-50替换原模型的骨干特征提取网络VGG16,以保留更多的纸病特征信息,增强特征网络对纸张缺陷的提取能力;在算法中添加空间和通道的双重注意力机制CBAM,用来提高纸病检测精度;将ROI-Pooling替换为ROI-Align,增强网络的泛化能力。结果实验结果表明,改进后的算法平均精度达到98%,较原算法平均精度提升了9%。结论改进后的算法能够充分提取纸病特征信息,有效提高了纸病的检测精度,以及提高了小目标纸病的检测率,降低了错漏检率。 展开更多
关键词 纸病检测 Faster R-CNN ResNet-50 卷积双重注意力机制 ROI-Align
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部