针对输电线路绝缘子缺陷检测准确率低和检测速度慢的问题,提出了一种基于多尺度特征编码和双重注意力融合的输电线路绝缘子缺陷检测方法。首先,为了使检测模型适应缺陷绝缘子特征尺度的多样性,编码网络采用Res2Net50提取更细粒度的特征...针对输电线路绝缘子缺陷检测准确率低和检测速度慢的问题,提出了一种基于多尺度特征编码和双重注意力融合的输电线路绝缘子缺陷检测方法。首先,为了使检测模型适应缺陷绝缘子特征尺度的多样性,编码网络采用Res2Net50提取更细粒度的特征,并在之后嵌入空洞空间金字塔池化模块实现多个尺度捕捉绝缘子及其缺陷的特征;其次,为了减少解码网络中特征信息的缺失,将主干网络的不同层特征与efficient channel attention注意力模块串联,并分别与经过squeeze and excitation注意力模块的各反卷积特征相加形成双重注意力融合。实验结果表明,所提方法的均值平均精度值约为95.35%,每秒传输帧数约为65.95,与其他方法相比,该方法对无人机绝缘子缺陷的准确检测具有一定的参考价值。展开更多
文摘针对输电线路绝缘子缺陷检测准确率低和检测速度慢的问题,提出了一种基于多尺度特征编码和双重注意力融合的输电线路绝缘子缺陷检测方法。首先,为了使检测模型适应缺陷绝缘子特征尺度的多样性,编码网络采用Res2Net50提取更细粒度的特征,并在之后嵌入空洞空间金字塔池化模块实现多个尺度捕捉绝缘子及其缺陷的特征;其次,为了减少解码网络中特征信息的缺失,将主干网络的不同层特征与efficient channel attention注意力模块串联,并分别与经过squeeze and excitation注意力模块的各反卷积特征相加形成双重注意力融合。实验结果表明,所提方法的均值平均精度值约为95.35%,每秒传输帧数约为65.95,与其他方法相比,该方法对无人机绝缘子缺陷的准确检测具有一定的参考价值。