期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双重自注意力机制和长短时记忆网络的剩余寿命预测
1
作者
吴嘉俊
苏春
张玉茹
《系统工程与电子技术》
EI
CSCD
北大核心
2024年第6期1986-1994,共9页
剩余使用寿命(remaining useful life,RUL)预测是产品故障预测与健康管理的重要内容。传统长短期记忆(long short-term memory,LSTM)网络无法主动选择关键特征、难以高效提取大数据所蕴含的退化信息。提出一种基于改进LSTM网络的RUL预...
剩余使用寿命(remaining useful life,RUL)预测是产品故障预测与健康管理的重要内容。传统长短期记忆(long short-term memory,LSTM)网络无法主动选择关键特征、难以高效提取大数据所蕴含的退化信息。提出一种基于改进LSTM网络的RUL预测方法,采用随机森林(random forest,RF)算法筛选输入特征,以主动选取关键特征;采用双重自注意力机制分别从特征维度和时间维度完成权重自适应分配,使模型在学习过程中关注主要特征和历史时间点;通过融合统计特征,以提高RUL预测精度。以航空发动机数据集为例完成案例分析,验证方法有效性。结果表明,所提方法能有效提高基于复杂数据集的RUL预测精度。
展开更多
关键词
剩余寿命预测
随机森林
双重自注意力机制
长短期记忆网络
航空发动机
下载PDF
职称材料
题名
基于双重自注意力机制和长短时记忆网络的剩余寿命预测
1
作者
吴嘉俊
苏春
张玉茹
机构
东南大学机械工程学院
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2024年第6期1986-1994,共9页
基金
国家自然科学基金(71671035)资助课题。
文摘
剩余使用寿命(remaining useful life,RUL)预测是产品故障预测与健康管理的重要内容。传统长短期记忆(long short-term memory,LSTM)网络无法主动选择关键特征、难以高效提取大数据所蕴含的退化信息。提出一种基于改进LSTM网络的RUL预测方法,采用随机森林(random forest,RF)算法筛选输入特征,以主动选取关键特征;采用双重自注意力机制分别从特征维度和时间维度完成权重自适应分配,使模型在学习过程中关注主要特征和历史时间点;通过融合统计特征,以提高RUL预测精度。以航空发动机数据集为例完成案例分析,验证方法有效性。结果表明,所提方法能有效提高基于复杂数据集的RUL预测精度。
关键词
剩余寿命预测
随机森林
双重自注意力机制
长短期记忆网络
航空发动机
Keywords
remaining useful life(RUL)prediction
random forest(RF)
double self-attention mechanism
long short-term memory(LSTM)network
aircraft engine
分类号
TH17 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双重自注意力机制和长短时记忆网络的剩余寿命预测
吴嘉俊
苏春
张玉茹
《系统工程与电子技术》
EI
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部