期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
自适应Kalman滤波修复六维力传感器下E膜模型误差
被引量:
1
1
作者
朱文超
许德章
《计算机应用》
CSCD
北大核心
2014年第3期915-920,共6页
为减小动载环境下,噪声信号对六维力传感器测量精度的影响,同时解决因传感器的简化模型误差较大,导致标准Kalman滤波无法获取最优估计的问题,提出一种双因子自适应Kalman滤波算法。算法根据正弦激励力响应和应变之间的关系,建立了下E型...
为减小动载环境下,噪声信号对六维力传感器测量精度的影响,同时解决因传感器的简化模型误差较大,导致标准Kalman滤波无法获取最优估计的问题,提出一种双因子自适应Kalman滤波算法。算法根据正弦激励力响应和应变之间的关系,建立了下E型膜有色噪声增广状态模型。在标准Kalman滤波的基础上,分析了两种模型误差对滤波效果的影响,采用实时调整状态预测在滤波估计中权重的策略,给出了自适应Kalman滤波准则及递推公式。基于正交性原理和最小二乘法准则,利用三段函数模型构造了双重自适应因子。仿真实例表明,与标准Kalman滤波与强跟踪滤波相比,所提算法具有更好的估计精度和稳定性,能够有效地控制模型误差的影响,从而提高六维力传感器的测量精度。
展开更多
关键词
六维力传感器
下E型膜
模型误差
自适应
Kalman滤波
双重自适应因子
下载PDF
职称材料
题名
自适应Kalman滤波修复六维力传感器下E膜模型误差
被引量:
1
1
作者
朱文超
许德章
机构
安徽工程大学机械与汽车工程学院
出处
《计算机应用》
CSCD
北大核心
2014年第3期915-920,共6页
基金
国家自然科学基金资助项目(51175001)
安徽省自然科学基金资助项目(11040606M144)
文摘
为减小动载环境下,噪声信号对六维力传感器测量精度的影响,同时解决因传感器的简化模型误差较大,导致标准Kalman滤波无法获取最优估计的问题,提出一种双因子自适应Kalman滤波算法。算法根据正弦激励力响应和应变之间的关系,建立了下E型膜有色噪声增广状态模型。在标准Kalman滤波的基础上,分析了两种模型误差对滤波效果的影响,采用实时调整状态预测在滤波估计中权重的策略,给出了自适应Kalman滤波准则及递推公式。基于正交性原理和最小二乘法准则,利用三段函数模型构造了双重自适应因子。仿真实例表明,与标准Kalman滤波与强跟踪滤波相比,所提算法具有更好的估计精度和稳定性,能够有效地控制模型误差的影响,从而提高六维力传感器的测量精度。
关键词
六维力传感器
下E型膜
模型误差
自适应
Kalman滤波
双重自适应因子
Keywords
six-axis force sensor
lower E-type membrane
model error
adaptive Kalman filtering
dual adaptive factor
分类号
TN911.72 [电子电信—通信与信息系统]
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
自适应Kalman滤波修复六维力传感器下E膜模型误差
朱文超
许德章
《计算机应用》
CSCD
北大核心
2014
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部