Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entangleme...Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement. Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost du~ing the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.展开更多
Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg XX chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsi...Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg XX chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsic decoherence on quantum entanglement and quantum teleportation exerts different effects in different initial systems, proper magnetic fields and probabilities of different eigenstates in the initial states can weaken the effects.展开更多
The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From th...The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α1 = α2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α3 may play active role to the entanglement capacity when auxiliary systems are allowed.展开更多
In this paper, we present a probabilistic teleportation scheme for unknown bipartite entangled state. By using linear optical elements, we convert the Bell-state measurement into separated single-qubit measurements.
Bell inequality is violated by the quantum mechanical predictions made from an entangled state of the composite system. In this paper we examine this inequality and entanglement measures in the construction of the coh...Bell inequality is violated by the quantum mechanical predictions made from an entangled state of the composite system. In this paper we examine this inequality and entanglement measures in the construction of the coherent states for two-qubit pure and mixed states, we find a link to some entanglement measures through some new parameters (amplitudes of coherent states). Conditions for maximal entanglement and separability are then established for both pure and mixed states. Finally, we analyze and compare the violation of Bell inequality for a class of mixed states with the degree of entanglement by applying the formalism of Horodecki et al.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 1044711.6 and 10325521 and the China Postdoctoral Science Foundation under Grant No. 2005038316
文摘Natural thermal entanglement between two qubits with XXX Heisenberg interaction is studied. For the antiferromagnet, increasing coupling strength or decreasing temperature under critical point increases the entanglement. Based on the thermal entanglement as quantum channel, entanglement and information of an input entangled state are transferred via partial teleportation. We find that the entanglement transferred will be lost du~ing the process, and for the entanglement fidelity the partial teleportation is superior to classical communication as concurrence of entangled channel beyond 1/4. We show that both correlation information in input entangled state and individual information of the teleported particle are linearly dissipated. With more entanglement in quantum channel, more entanglement and correlation information can be transferred.
基金Acknowledgments We would like to thank Z.H. He's wife for helpful discussion and his newly born baby Yiyi for her powerful inspiration. We are grateful to Southwest University for the financial support on this project under Grant No. SWNUQ2004019.
文摘Quantum teleportation is investigated by using the entangled states of two-qubit Heisenberg XX chain in an external uniform magnetic field as resources in the model of Milburn's intrinsic decoherence. Though intrinsic decoherence on quantum entanglement and quantum teleportation exerts different effects in different initial systems, proper magnetic fields and probabilities of different eigenstates in the initial states can weaken the effects.
基金The project supported by National Natural Science Foundation of China under Grant No. 60433050
文摘The'entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α1 = α2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α3 may play active role to the entanglement capacity when auxiliary systems are allowed.
基金The project supported by the Natural Science Foundation of the Education Department of Anhui Province under Grant Nos. 2006kj070A and 2006kj057B, National Natural Science Foundation of China under Grant No. 10574001, and the Talent Foundation of Anhui University
文摘In this paper, we present a probabilistic teleportation scheme for unknown bipartite entangled state. By using linear optical elements, we convert the Bell-state measurement into separated single-qubit measurements.
文摘Bell inequality is violated by the quantum mechanical predictions made from an entangled state of the composite system. In this paper we examine this inequality and entanglement measures in the construction of the coherent states for two-qubit pure and mixed states, we find a link to some entanglement measures through some new parameters (amplitudes of coherent states). Conditions for maximal entanglement and separability are then established for both pure and mixed states. Finally, we analyze and compare the violation of Bell inequality for a class of mixed states with the degree of entanglement by applying the formalism of Horodecki et al.