Three series of novel anti-immunodeficiency virus 1 (HIV-1) dual (RT/1N) inhibitors were rationally designed by introducing a functioning diketo acid (DKA) into pyridin-2-one scaffold. To efficiently analyze inh...Three series of novel anti-immunodeficiency virus 1 (HIV-1) dual (RT/1N) inhibitors were rationally designed by introducing a functioning diketo acid (DKA) into pyridin-2-one scaffold. To efficiently analyze inhibitory activity, these compounds were screened against HIV-1 RT and IN respectively via surface plasmon resonance (SPR), and active compounds were subsequently evaluated by enzyme assay. It was noteworthy that compound A2 exhibited moderate activity against both HIV-1 RT and IN. This result provided information for further development of pyridinone analogues as potent dual HIV-1 inhibitors.展开更多
基金National Science and Technology Major Project(2018ZX09711002-002-009)the National Natural Science Foundation of China(81703358)Science and Technology Commission of Shanghai Municipality(18QB1404200,17431903900,14YF1412800)
基金National Natural Science Foundation of China(Grant No.21172014,812111023 and 81172733)grants from the Ministry of Science and Technology of China(Grant No.200 9ZX09301-010)
文摘Three series of novel anti-immunodeficiency virus 1 (HIV-1) dual (RT/1N) inhibitors were rationally designed by introducing a functioning diketo acid (DKA) into pyridin-2-one scaffold. To efficiently analyze inhibitory activity, these compounds were screened against HIV-1 RT and IN respectively via surface plasmon resonance (SPR), and active compounds were subsequently evaluated by enzyme assay. It was noteworthy that compound A2 exhibited moderate activity against both HIV-1 RT and IN. This result provided information for further development of pyridinone analogues as potent dual HIV-1 inhibitors.