This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
The power of the toroidal field (TF) coil in HL-2A is supplied with two 80 MVA motor generators (MGs) together through a diode rectifier. The TF system is designed to obtain the parameters as follows: the highest...The power of the toroidal field (TF) coil in HL-2A is supplied with two 80 MVA motor generators (MGs) together through a diode rectifier. The TF system is designed to obtain the parameters as follows: the highest toroidal filed of 2.8 T, the biggest coil current of 45 kA, the fiat top time of 3-5 s. So the released energy of each MG set for one pulse discharge mast be more than 500 MJ.展开更多
Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets can...Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible展开更多
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
文摘The power of the toroidal field (TF) coil in HL-2A is supplied with two 80 MVA motor generators (MGs) together through a diode rectifier. The TF system is designed to obtain the parameters as follows: the highest toroidal filed of 2.8 T, the biggest coil current of 45 kA, the fiat top time of 3-5 s. So the released energy of each MG set for one pulse discharge mast be more than 500 MJ.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572334,11272321 and 11402274)
文摘Microfluidic droplets have emerged as novel platforms for chemical and biological applications. Manipulation of droplets has thus attracted increasing attention. Different from solid particles, deformable droplets cannot be efficiently controlled by inertia-driven approaches. Here, we report a study on the lateral migration of dual droplet trains in a double spiral microchannel at low Reynolds numbers. The dominant driving mechanism is elucidated as wall effect originated from the droplet deformation. Three types of migration modes are observed with varying Reynolds numbers and the size-dependent mode is intensively investigated. We obtain empirical formulas by relating the migration to Reynolds numbers and droplet sizes. The effect of droplet deformability on the migration and the detailed migration behavior along the double spiral channel are discussed. Numerical simulations are also performed and yielded in qualitative agreement with the experiments. could be a promising alternative to existing inertia-driven approaches bio-particles. This proposed low Re approach based on lateral migration especially concerning deformable entities and susceptible