[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo...[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.展开更多
Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surfac...Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surface will totally reflect the patterns when it is placed inside a dome-shaped light source, whose inner wall is modified by patterns with certain regular. Distortion or intermittence of reflected pattern will occur at the defective part, which indicates the pattern has lost its integrity. Based on the integrity analysis of reflected pattern images? surface defects can be revealed. In this paper, a set of concentric circles are used as the pattern and an image processing algorithm is customized to extract the surface defects. Results show that the proposed method is effective for the specular curved surface defect inspection展开更多
In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on ...In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on the target conductor response using forward modeling and inversion. The 2D forward finite element calculations show that the conductor mainly affects the response at middle and low frequencies. The lower the resistivity and the larger the conductor, the larger the effect and the effect increases with decreasing frequency. The inversion results indicate that the calculated position of the target body can move towards the source, leading to an incorrect interpretation without considering the conductor. In order to reduce the effect of a conductor between the source and the survey area, CSEM acquisition should be conducted in three dimensions using multiple sources and 3D inversion should be used during interpretation.展开更多
In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm r...In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.展开更多
The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atm...The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atmosphere due to the high activated energy of 88.7 k J/mol at the G3 level of theory. However, the computed results predict that the barrier for unimolecular decomposition of CF3OH is decreased to 25.1 kJ/mol from 188.7 k J/mol with the aid of NH3 at the G3 level of theory, which shows that the ammonia play a strong catalytic effect on the split of CF3OH. In addition, the calculated rate constants show that the decomposition of CF3OH by NH3 is faster than those of H2O and the water dimmer by 10^9 and 10^5 times respectively. The rate constants combined with the corresponding concentrations of these species demonstrate that the reaction CF3OH with NH3 via TS4 is of great importance for the decomposition of CF3OH in the atmosphere.展开更多
Assuming uniform albedo and Lambertian surface for the imaging model, a new robust method for estimation of illuminant direction and albedo from shading is presented. If there is a singular point with maximum intensit...Assuming uniform albedo and Lambertian surface for the imaging model, a new robust method for estimation of illuminant direction and albedo from shading is presented. If there is a singular point with maximum intensity in an image, the method use shading information of the singular point and its neighbors to estimate directly the elevation of illuminant direction, surface albedo, and the bias brightness. Some experiment results on synthetic images are given to illustrate the new approach is accurate and robust.展开更多
Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using...Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using OM and SEM. Electrochemical properties of the Mg-2%Ga alloys with different freezing rates were measured by galvanostatic, potentiodynamic and electrochemical impedance spectroscopy tests. The results show that solidification by copper mould leads to intergranular MgsGa2 compounds with small size and large number density. Less adsorbent of Mg^+ and oxide corrosion products occur on the surface of the Mg-2%Ga alloys solidified by copper mould, producing lower corrosion current density of 1.8×10^-5 mA/cm^2. In the galvanostatic tests with 100 mA/cm^2 current density, more negative stable potential of-1.604 V exists in the Mg-2%Ga alloys solidified by iron mould due to the lower freezing rate, which leads to smaller inductive and capacity time constants as well as shorter activity time and better electrochemical activity.展开更多
Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections ...Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.展开更多
It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization appli...It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.展开更多
We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with sy...We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution efficiency of the algorithm for several different situations is also compared. The results indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.展开更多
A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolut...A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references.展开更多
From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are ...From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.展开更多
The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and th...The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble.展开更多
The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. T...The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.展开更多
In the light of the problem of oil pollution brought about by ships, in this paper we present the concept of backward tracing oil spills. In the course of backward calculation of the two-dimensional convection & d...In the light of the problem of oil pollution brought about by ships, in this paper we present the concept of backward tracing oil spills. In the course of backward calculation of the two-dimensional convection & diffusion equation, on the one hand, the advection term itself has the strong unilateral property, which means information in the upper reaches is transmitted downstream via the advection term; on the other hand, because of the opposite direction of calculation, it is essential for information to be conveyed upstream by means of the advection term. In addition, unlike that in the forward calculation, the diffusion term in the backward calculation is prone to accumulate errors, and thus renders the whole scheme unstable. Therefore, we adopt the central difference to deal with both the convectional term and the diffusion term. By examining two practical examples (1) under the unlimited boundary condition, and (2) under the limited boundary condition, it is proven that this method could achieve fundamentally satisfactory results not only in the open ocean but also in the closed or semi-closed bay.展开更多
Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the tw...Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.展开更多
Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. O...Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. Optimized structures and structural reactivates have been studied through bond stability and angles using DFT calculation based on the basis set 6-31G*. Energetic properties have been calculated like total energy, Gibbs free energy, entropy, heat of formation, and rate constant for all chemical species that's participate in the suggested reaction mechanism. Reaction mechanism and rate determining step had been suggested according to calculation of energy barrier values, and compares between the suggested competitive reactions for each probable reaction step. Suggested structures and the probable transition states have been studied.展开更多
The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers b...The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.展开更多
To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is perf...To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.展开更多
文摘[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings.
基金Tianjin Research Program of Application Foundation and Advanced Technology(No.14JCYBJC18600,No.14JCZDJC39700)National Key Scientific Instrument and Equipment Development Project(No.2013YQ17053903)
文摘Defect inspection of specular curved surface is a challenging job. Taking steel balls for example, a new method based on reflected pattern integrity recognition is put forward. The specular steel ball surface will totally reflect the patterns when it is placed inside a dome-shaped light source, whose inner wall is modified by patterns with certain regular. Distortion or intermittence of reflected pattern will occur at the defective part, which indicates the pattern has lost its integrity. Based on the integrity analysis of reflected pattern images? surface defects can be revealed. In this paper, a set of concentric circles are used as the pattern and an image processing algorithm is customized to extract the surface defects. Results show that the proposed method is effective for the specular curved surface defect inspection
基金supported by the Project kzcx2-yw-113,kzcx2-yw-121 and kzcx1-yw-15-4,CAS
文摘In CSEM exploration, the receivers are generally located about three to five times the skin depth from the transmitter. In this paper, we study the effect of a conductor between the transmitter and the survey area on the target conductor response using forward modeling and inversion. The 2D forward finite element calculations show that the conductor mainly affects the response at middle and low frequencies. The lower the resistivity and the larger the conductor, the larger the effect and the effect increases with decreasing frequency. The inversion results indicate that the calculated position of the target body can move towards the source, leading to an incorrect interpretation without considering the conductor. In order to reduce the effect of a conductor between the source and the survey area, CSEM acquisition should be conducted in three dimensions using multiple sources and 3D inversion should be used during interpretation.
基金supported by the National Science and Technology Major Project (No.2011ZX05023-005-008)
文摘In this paper, we built upon the estimating primaries by sparse inversion (EPSI) method. We use the 3D curvelet transform and modify the EPSI method to the sparse inversion of the biconvex optimization and Ll-norm regularization, and use alternating optimization to directly estimate the primary reflection coefficients and source wavelet. The 3D curvelet transform is used as a sparseness constraint when inverting the primary reflection coefficients, which results in avoiding the prediction subtraction process in the surface-related multiples elimination (SRME) method. The proposed method not only reduces the damage to the effective waves but also improves the elimination of multiples. It is also a wave equation- based method for elimination of surface multiple reflections, which effectively removes surface multiples under complex submarine conditions.
基金This work was supported by the National Natural Science Foundation of China (No.10865003) and the Guizhou University for Nationalities (2010). The authors thank professors W. T. Duncan, R. L. Bell, and T. N. Truong or providing the rate program through the internet.
文摘The G3 and CBS-QB3 theoretical methods are employed to study the decomposition of CF3OH into FCFO and HF by water, water dimmer, and ammonia. The decomposition of CF3OH into FCFO and HF is unlikely to occur in the atmosphere due to the high activated energy of 88.7 k J/mol at the G3 level of theory. However, the computed results predict that the barrier for unimolecular decomposition of CF3OH is decreased to 25.1 kJ/mol from 188.7 k J/mol with the aid of NH3 at the G3 level of theory, which shows that the ammonia play a strong catalytic effect on the split of CF3OH. In addition, the calculated rate constants show that the decomposition of CF3OH by NH3 is faster than those of H2O and the water dimmer by 10^9 and 10^5 times respectively. The rate constants combined with the corresponding concentrations of these species demonstrate that the reaction CF3OH with NH3 via TS4 is of great importance for the decomposition of CF3OH in the atmosphere.
文摘Assuming uniform albedo and Lambertian surface for the imaging model, a new robust method for estimation of illuminant direction and albedo from shading is presented. If there is a singular point with maximum intensity in an image, the method use shading information of the singular point and its neighbors to estimate directly the elevation of illuminant direction, surface albedo, and the bias brightness. Some experiment results on synthetic images are given to illustrate the new approach is accurate and robust.
基金Project (JPPT-115-4-1682) supported by the National Defense Science and Technology Industry Committee of China
文摘Equilibrium freezing curve of Mg-2%Ga (mass fraction) alloy was calculated by CALPHALD method. Microstructures of the melted Mg-2%Ga alloys solidified by iron and copper moulds, respectively, were investigated using OM and SEM. Electrochemical properties of the Mg-2%Ga alloys with different freezing rates were measured by galvanostatic, potentiodynamic and electrochemical impedance spectroscopy tests. The results show that solidification by copper mould leads to intergranular MgsGa2 compounds with small size and large number density. Less adsorbent of Mg^+ and oxide corrosion products occur on the surface of the Mg-2%Ga alloys solidified by copper mould, producing lower corrosion current density of 1.8×10^-5 mA/cm^2. In the galvanostatic tests with 100 mA/cm^2 current density, more negative stable potential of-1.604 V exists in the Mg-2%Ga alloys solidified by iron mould due to the lower freezing rate, which leads to smaller inductive and capacity time constants as well as shorter activity time and better electrochemical activity.
文摘Wide angle acquisition has been taken as a significant measure to obtain high quality seismic data and is getting greater attention, In this paper, we discuss ocean bottom cable (OBC) seismic wide angle reflections on the basis of a layered model experiment. Some experiment results don't support theoretical conclusions. The main experimental conclusions are: 1. Wide angle reflection energies are stronger than non-wide-angle reflections (up to twice as strong) but there is a big difference between observations and theoretical calculations that suggest the wide angle reflection energies are 15 times the non- wide-angle reflection energy. The reflection energy increases gradually rather than sharply as the theoretical calculations suggest. 2. The reflection events remain hyperbolic when the offset increases. 3. Wide angle reflection dominant frequency is about 20-30% less than non- wide-angle reflections and decreases as the offset increases. The non-wide-angle reflection dominant frequency shows no obvious variation for small offsets. 4. There is no wave shape mutation or polarity reversal near the critical angle. 5. The reflection event group features are the same for both cases of incidence angle greater and less than the critical angle. 6. Direct arrivals, multiples, and water bottom refractions influence the wide angle reflections of the sea floor.
基金supported by the National Natural Science Foundation of China (21103165)
文摘It is crucial to understand the mechanism of low temperature CO oxidation reaction catalyzed by gold nanoparticles so as to find out the origin of the high catalytic reactivity and extend the indus‐trialization applications of nano gold catalysts. In this work, some theoretical works on CO adsorp‐tion, O2 adsorption, atomic oxygen adsorption, formation of surface gold oxide films, reaction mechanisms of CO oxidation involving O2 reaction with CO and O2 dissociation before reacting with CO on gold surfaces and Au/metal oxide were summarized, and the influences of coordination number, charge transfer and relativity of gold on CO oxidation reaction were briefly reviewed. It was found that CO reaction mechanism depended on the systems with or without oxide and the strong relativistic effects might play an important role in CO oxidation reaction on gold catalysts. In particular, the relativistic effects are related to the unique behaviors of CO adsorption, O adsorption, O2 activation on gold surfaces, effects of coordination number and the wide gap between the chem‐ical inertness of bulk gold and high catalytic activity of nano gold. The present work helps us to understand the CO oxidation reaction mechanism on gold catalysts and the influence of relativistic effects on gold catalysis.
基金sponsored by National Natural Science Foundation of China(Grant No.40774029,40374024)the National Hi-tech Rsearch and Development Program of China(863 Program)(No.2007AA09Z310,)the Program for New Century Excellent Talents in University(NCET)
文摘We implement a parallel algorithm with the advantage of MPI (Message Passing Interface) to speed up the rapid relaxation inversion for 3D magnetotelluric data. We test the parallel rapid relaxation algorithm with synthetic and real data. The execution efficiency of the algorithm for several different situations is also compared. The results indicate that the parallel rapid relaxation algorithm for 3D magnetotelluric inversion is effective. This parallel algorithm implemented on a common PC promotes the practical application of 3D magnetotelluric inversion and can be suitable for the other geophysical 3D modeling and inversion.
文摘A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references.
基金The National Science Fund for Distinguished Young Scholars (No.60425206)the National Natural Science Foundation of China (No.60633010)the Natural Science Foundation of Jiangsu Province(No.BK2006094)
文摘From a perspective of theoretical study, there are some faults in the models of the existing object-oriented programming languages. For example, C# does not support metaclasses, the primitive types of Java and C# are not objects, etc. So, this paper designs a programming language, Shrek, which integrates many language features and constructions in a compact and consistent model. The Shrek language is a class-based purely object-oriented language. It has a dynamical strong type system, and adopts a single-inheritance mechanism with Mixin as its complement. It has a consistent class instantiation and inheritance structure, and the ability of intercessive structural computational reflection, which enables it to support safe metaclass programming. It also supports multi-thread programming and automatic garbage collection, and enforces its expressive power by adopting a native method mechanism. The prototype system of the Shrek language is implemented and anticipated design goals are achieved.
基金Project(NCET-05-0413)support by the Program for New Century Excellent Talents in UniversityProject(YB0142112) support by Priming Foundation of East China University of Science and Technology
文摘The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble.
基金Funded by the Natural Science Foundation of China (No. 50775081)the National High-tech R&D (863) Program No. 2006AA09Z238)the NCET-07-0330, State Education Ministry.
文摘The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.
基金funded by NSFC 40076005 and Frontier Innovation Project L390221103 from the Chinese Academy of Sciencesthe financial support from the National Tenth Five-Year Key Project H57022113.
文摘In the light of the problem of oil pollution brought about by ships, in this paper we present the concept of backward tracing oil spills. In the course of backward calculation of the two-dimensional convection & diffusion equation, on the one hand, the advection term itself has the strong unilateral property, which means information in the upper reaches is transmitted downstream via the advection term; on the other hand, because of the opposite direction of calculation, it is essential for information to be conveyed upstream by means of the advection term. In addition, unlike that in the forward calculation, the diffusion term in the backward calculation is prone to accumulate errors, and thus renders the whole scheme unstable. Therefore, we adopt the central difference to deal with both the convectional term and the diffusion term. By examining two practical examples (1) under the unlimited boundary condition, and (2) under the limited boundary condition, it is proven that this method could achieve fundamentally satisfactory results not only in the open ocean but also in the closed or semi-closed bay.
基金supported by the National Natural Science Foundation of China(21473233,21403277)the Energy Technologies Institute LLP,UK~~
文摘Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate.
文摘Quantum calculation method has been used to understand and investigate the free radical reactions of propane with hydroxyl radical in vacuum through modem quantum mechanics that is package on hyperchem 8.02 program. Optimized structures and structural reactivates have been studied through bond stability and angles using DFT calculation based on the basis set 6-31G*. Energetic properties have been calculated like total energy, Gibbs free energy, entropy, heat of formation, and rate constant for all chemical species that's participate in the suggested reaction mechanism. Reaction mechanism and rate determining step had been suggested according to calculation of energy barrier values, and compares between the suggested competitive reactions for each probable reaction step. Suggested structures and the probable transition states have been studied.
基金Projects(71301115,71271150,71101102)supported by the National Natural Science Foundation of ChinaProject(20130032120009)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.
基金supported by the Key Natural Science Foundation(No.41530320)Natural Science Foundation(No.41274121)+1 种基金Natural Science Foundation for young scientist(No.41404093)the Projects on the Development of the Key Equipment of Chinese Academy of Science(No.ZDYZ2012-1-03)
文摘To improve the inversion accuracy of time-domain airborne electromagnetic data, we propose a parallel 3D inversion algorithm for airborne EM data based on the direct Gauss-Newton optimization. Forward modeling is performed in the frequency domain based on the scattered secondary electrical field. Then, the inverse Fourier transform and convolution of the transmitting waveform are used to calculate the EM responses and the sensitivity matrix in the time domain for arbitrary transmitting waves. To optimize the computational time and memory requirements, we use the EM "footprint" concept to reduce the model size and obtain the sparse sensitivity matrix. To improve the 3D inversion, we use the OpenMP library and parallel computing. We test the proposed 3D parallel inversion code using two synthetic datasets and a field dataset. The time-domain airborne EM inversion results suggest that the proposed algorithm is effective, efficient, and practical.