文章主要研究Banach代数上两个元素和的伪Drazin逆的存在性.通过Pierce分解,得到两个元素和具有伪Drazin逆的一些条件.然后,研究了Banach代数上反三角算子矩阵的伪Drazin逆的存在性,证明了反三角算子矩阵(1 b 10)∈M_(2)(A)^(■),b∈(A...文章主要研究Banach代数上两个元素和的伪Drazin逆的存在性.通过Pierce分解,得到两个元素和具有伪Drazin逆的一些条件.然后,研究了Banach代数上反三角算子矩阵的伪Drazin逆的存在性,证明了反三角算子矩阵(1 b 10)∈M_(2)(A)^(■),b∈(A)^(■) 当且仅当b∈A^(■).最后,给出相应的数值例子来论证得到的结果.展开更多
We show that the reflexive algebra Alg(L) given by a double triangle lattice L in a finite factor M(with L" = M) is maximal non-selfadjoint in the class of all weak operator closed subalgebras with the same diago...We show that the reflexive algebra Alg(L) given by a double triangle lattice L in a finite factor M(with L" = M) is maximal non-selfadjoint in the class of all weak operator closed subalgebras with the same diagonal subalgebra Alg(L) ∩ Alg(L)^+.Our method can be used to prove similar results in finite-dimensional matrix algebras.As a consequence,we give a new proof to the main theorem by Hou and Zhang(2012).展开更多
文摘文章主要研究Banach代数上两个元素和的伪Drazin逆的存在性.通过Pierce分解,得到两个元素和具有伪Drazin逆的一些条件.然后,研究了Banach代数上反三角算子矩阵的伪Drazin逆的存在性,证明了反三角算子矩阵(1 b 10)∈M_(2)(A)^(■),b∈(A)^(■) 当且仅当b∈A^(■).最后,给出相应的数值例子来论证得到的结果.
基金supported by National Natural Science Foundation of China(Grant No.11371290)
文摘We show that the reflexive algebra Alg(L) given by a double triangle lattice L in a finite factor M(with L" = M) is maximal non-selfadjoint in the class of all weak operator closed subalgebras with the same diagonal subalgebra Alg(L) ∩ Alg(L)^+.Our method can be used to prove similar results in finite-dimensional matrix algebras.As a consequence,we give a new proof to the main theorem by Hou and Zhang(2012).