In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. ...In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.展开更多
The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with c...The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.展开更多
Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Exper...Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Experimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of 〈1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctuation increases as the impinging velocity, Uo increasing.展开更多
The interaction of two coherent counter propagating TE (transverse-electric) and TM (transverse-magnetic) electromagnetic waves with different initial phases in the absorbing plate placed in the regular ideal wave...The interaction of two coherent counter propagating TE (transverse-electric) and TM (transverse-magnetic) electromagnetic waves with different initial phases in the absorbing plate placed in the regular ideal waveguide is considered. The losses of energy of TE and TM waves in the absorbing plate are calculated. Some features of tunnel interference in the absorbing plate in the waveguide are revealed. It is shown that the losses of energy strongly depend on the various parameters describing the interaction of the counter propagating waves. Definitely choosing the parameters we can control the electromagnetic processes in this case.展开更多
A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the ...A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.展开更多
Based on the good localization characteristic of the wavelet transform both in time and frequency domain, a de-noising method based on wavelet transform is presented, which can make the extraction of visual evoked pot...Based on the good localization characteristic of the wavelet transform both in time and frequency domain, a de-noising method based on wavelet transform is presented, which can make the extraction of visual evoked potentials in single training sample from the EEG background noise in favor of studying the changes between the single sample response happen. The information is probably related with the different function, appearance and pathologies of the brain. At the same time this method can also be used to remove those signal’s artifacts that do not appear with EP within the same scope of time or frequency. The traditional Fourier filter can hardly attain the similar result. This method is different from other wavelet de-noising methods in which different criteria are employed in choosing wavelet coefficient. It has a biggest virtue of noting the differences among the single training sample and making use of the characteristics of high time frequency resolution to reduce the effect of interference factors to a maximum extent within the time scope that EP appear. The experiment result proves that this method is not restricted by the signal-to-noise ratio of evoked potential and electroencephalograph (EEG) and even can recognize instantaneous event under the condition of lower signal-to-noise ratio, as well as recognize the samples which evoked evident response more easily. Therefore, more evident average evoked response could be achieved by de-nosing the signals obtained through averaging out the samples that can evoke evident responses than de-nosing the average of original signals. In addition, averaging methodology can dramatically reduce the number of record samples needed, thus avoiding the effect of behavior change during the recording process. This methodology pays attention to the differences among single training sample and also accomplishes the extraction of visual evoked potentials from single trainings sample. As a result, system speed and accuracy could be improved to a great extent if this methodology is applied to brain-computer interface system based on evoked responses.展开更多
The wide application of pre-stressed bolting technology in coal mine tunnels has made the nondestructive stress wave reflection method of determining bolting quality an important one. The effect of the support plate o...The wide application of pre-stressed bolting technology in coal mine tunnels has made the nondestructive stress wave reflection method of determining bolting quality an important one. The effect of the support plate on the dynamic response of the pre-stressed anchor is of particular interest. A theoretical analysis and numerical simulations are used to identify the factors affecting the contact stress between the support plate and the rock wall. A formula allowing the calculation of contact stress is presented. Stress wave propagation through the nut, support plate, and rock wall are predicted. The dynamic response signals were measured in the field using prestressed anchors pre-tightened to different torques. The effects from the support plate on the dynamic response were recorded and the results compared to the predictions of pre-stressed anchor. This work provides a theoretical reference for the signal processing of dynamic reflected wave signals in anchor bolts.展开更多
The relationship between the number of detonation waves and the evolution process of the flow field in a rotating detonation engine was investigated through a numerical analysis.The simulations were based on the Euler...The relationship between the number of detonation waves and the evolution process of the flow field in a rotating detonation engine was investigated through a numerical analysis.The simulations were based on the Euler equation and a detailed chemical reaction model.In the given engine model,the flow-field evolution became unstable when a single detonation wave was released.New detonation waves formed spontaneously,changing the operational mode from single-wave to four-wave.However,when two or three detonation waves were released,the flow field evolved in a quasi-steady manner.Further study revealed that the newly formed detonation wave resulted from an accelerated chemical reaction on the contact surface between the detonation products and the reactive mixture.To satisfy the stable propagation requirements of detonation waves,we proposed a parameter called NL,which can be compared with the number of detonation waves in the combustor to predict the evolution(quasi-stable or unstable)of the flow field.Finally,we verified the effectiveness of NL in a redesigned engine.This study may assist the operational mode control in rotating detonation engine experiments.展开更多
Heterogeneous catalysts are promising candidates for use in organic reactions due to their advantages in separation, recovery, and environment compatibility. In this work, an active porous catalyst denoted as Pd embed...Heterogeneous catalysts are promising candidates for use in organic reactions due to their advantages in separation, recovery, and environment compatibility. In this work, an active porous catalyst denoted as Pd embedded in porous carbon (Pd@CMK-3) has been prepared by a strategy involving immersion, ammonia- hydrolysis, and heating procedures. Detailed characterization of the catalyst revealed that Pd(0) and Pd(I1) species co-exist and were embedded in the matrix of the porous carbon (CMK-3). The as-prepared catalyst has shown high activity toward Suzuki reactions. Importantly, if the reaction mixture was homogenized by two minutes of ultrasonication rather than magnetic stirring before heating, the resistance to mass transfer in the pore channels was significantly reduced. As a result, the reactions proceeded more rapidly and a four-fold increase in the turnover frequency (TOF) could be obtained. When the ultrasonication was employed throughout the entire reaction process, the conversion could also exceed 90% even without the protection of inert gas, and although the reaction temperature was lowered to 30 ℃. This work provides a method for fabricating highly active porous carbon encapsulated Pd catalysts for Suzuki reactions and proves that the problem of mass transfer in porous catalysts can be conveniently resolved by ultrasonication without any chemical modification being necessary.展开更多
A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the th...A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.展开更多
The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we ob...The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we obtained the partial derivatives of seismic wave reflection coefficients with respect to wave vectors,and computed the Goos-Hnchen shift for reflected P-and VS-waves.By plotting the curves of Goos-Hnchen shift,we gained some new insight into the lateral shift of seismic reflection wave.The lateral shifts are very large for glancing wave or the wave of the incidence angle near the critical angle,meaning that the seismic wave propagates a long distance along the reflection interface before returning to the first medium.For the reflection waves of incidence angles away from the critical angle,the lateral shift is in the same order of magnitude as the wavelength.The lateral shift varies significantly with different reflection interfaces.For example,the reflected P-wave has a negative shift at the reflection interface between mudstone and sandstone.The reflected VS-wave has a large lateral shift at or near the critical angle.The lateral shift of the reflected VS-wave tends to be zero when the incidence angle approaches 90°.These observations suggest that Goos-Hnchen effect has a great influence on the reflection wave of wide-angles.The correction for the error caused by Goos-Hnchen effect,therefore,should be made before seismic data processing,such as the depth migration and the normal-moveout correction.With the theoretical foundation established in this paper,we can further study the correction of Goos-Hnchen effect for the reflection wave of large incidence angle.展开更多
基金The National High Technology Research and Development Program of China (863 Program) (No.2008AA01Z227)the Cultivatable Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China (No.706028)
文摘In order to enhance the accuracy and reliability of wireless location under non-line-of-sight (NLOS) environments,a novel neural network (NN) location approach using the digital broadcasting signals is presented. By the learning ability of the NN and the closely approximate unknown function to any degree of desired accuracy,the input-output mapping relationship between coordinates and the measurement data of time of arrival (TOA) and time difference of arrival (TDOA) is established. A real-time learning algorithm based on the extended Kalman filter (EKF) is used to train the multilayer perceptron (MLP) network by treating the linkweights of a network as the states of the nonlinear dynamic system. Since the EKF-based learning algorithm approximately gives the minimum variance estimate of the linkweights,the convergence is improved in comparison with the backwards error propagation (BP) algorithm. Numerical results illustrate thatthe proposedalgorithmcanachieve enhanced accuracy,and the performance ofthe algorithmis betterthanthat of the BP-based NN algorithm and the least squares (LS) algorithm in the NLOS environments. Moreover,this location method does not depend on a particular distribution of the NLOS error and does not need line-of-sight ( LOS ) or NLOS identification.
文摘The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied.Using Laplace transform combining with contour integral of the Laplace inverse transform specifically,the general analytical expressions of the soil displacement and stress are obtained in the time domain,respectively.And the numerical solutions of the problem computed by analytical expressions are presented.In the time domain,the dynamic responses of the infinite elastic soil are analyzed,and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results.One observes good agreement between analytical and numerical inversion results,lending the further support to the method presented.Finally,some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival,and after the shear wave arrival,the stress and the displacement at this point increase abruptly,then reduce and tend to the static value gradually at last.The wave attenuates along the radial,therefore the farther the wave is from the source,the smaller the stress and the displacement are,and the stress and the displacement are just functions of the radial distance from the axis.
基金the National Natural Science Foundation of China (No.29276260, No.20176043).ACKN0WLEDGEMENT The authors would like to thank Dr. Zhang Jian- wei who worked a lot in preparation of the apparatus for pressure fluctuation measurements.
文摘Pressure fluctuation in the submerged circulative impinging stream reactor (SCISR) is studied by measuring the dynamic pressure with micro pressure sensors of high accuracy, with water as the process material. Experimental results show that the maximum amplitude of fluctuation can be up to about 1.6kPa. On the power spectra the fluctuation is relatively concentrated in the range of 〈1000Hz, with some weak peeks in acoustic wave range. The space profile of intensive fluctuation region in the reactor is determined. The region is found to take the form of a couple truncated cones of empty core, with coincided bottoms, and is symmetrical with respect to the impinging plane and approximately symmetrical about the axis, essentially independent of u0. The integral intensity of fluctuation increases as the impinging velocity, Uo increasing.
文摘The interaction of two coherent counter propagating TE (transverse-electric) and TM (transverse-magnetic) electromagnetic waves with different initial phases in the absorbing plate placed in the regular ideal waveguide is considered. The losses of energy of TE and TM waves in the absorbing plate are calculated. Some features of tunnel interference in the absorbing plate in the waveguide are revealed. It is shown that the losses of energy strongly depend on the various parameters describing the interaction of the counter propagating waves. Definitely choosing the parameters we can control the electromagnetic processes in this case.
基金Project(20070533131) supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(50275150) supported by the National Natural Science Foundation of China
文摘A new ultrasound contrast imaging technique was proposed for eliminating the harmonic components from the emission signal transmitted by the broadband ultrasonic system.Reversal phase-inversion pulse was used for the first time to separate the contrast harmonics from the harmonics in the emission signal to improve the detection of contrast micro-bubbles.Based on the nonlinear acoustic theory of finite-amplitude effects and the associated distortion of the propagating wave,the Bessel-Fubini series model was applied to describe the nonlinear propagation effects of the reversal phase-inversion pulse,and the Church's equation for zero-thickness encapsulation model was used to produce the scattering-pulse of the bubble.For harmonic imaging,the experiment was performed using a 64-element linear array,which was simulated by Field II.The results show that the harmonic components from the emission signal can be completely cancelled,and the harmonics generated by the nonlinear propagation of the wave through the tissue,can be reduced by 15-30 dB.Compared with the short pulse,the reversal phase-inversion pulse can improve the contrast and definition of the harmonic image significantly.
文摘Based on the good localization characteristic of the wavelet transform both in time and frequency domain, a de-noising method based on wavelet transform is presented, which can make the extraction of visual evoked potentials in single training sample from the EEG background noise in favor of studying the changes between the single sample response happen. The information is probably related with the different function, appearance and pathologies of the brain. At the same time this method can also be used to remove those signal’s artifacts that do not appear with EP within the same scope of time or frequency. The traditional Fourier filter can hardly attain the similar result. This method is different from other wavelet de-noising methods in which different criteria are employed in choosing wavelet coefficient. It has a biggest virtue of noting the differences among the single training sample and making use of the characteristics of high time frequency resolution to reduce the effect of interference factors to a maximum extent within the time scope that EP appear. The experiment result proves that this method is not restricted by the signal-to-noise ratio of evoked potential and electroencephalograph (EEG) and even can recognize instantaneous event under the condition of lower signal-to-noise ratio, as well as recognize the samples which evoked evident response more easily. Therefore, more evident average evoked response could be achieved by de-nosing the signals obtained through averaging out the samples that can evoke evident responses than de-nosing the average of original signals. In addition, averaging methodology can dramatically reduce the number of record samples needed, thus avoiding the effect of behavior change during the recording process. This methodology pays attention to the differences among single training sample and also accomplishes the extraction of visual evoked potentials from single trainings sample. As a result, system speed and accuracy could be improved to a great extent if this methodology is applied to brain-computer interface system based on evoked responses.
基金Financial support for this work, provided by the National Natural Science Foundation of China (No.50874104)
文摘The wide application of pre-stressed bolting technology in coal mine tunnels has made the nondestructive stress wave reflection method of determining bolting quality an important one. The effect of the support plate on the dynamic response of the pre-stressed anchor is of particular interest. A theoretical analysis and numerical simulations are used to identify the factors affecting the contact stress between the support plate and the rock wall. A formula allowing the calculation of contact stress is presented. Stress wave propagation through the nut, support plate, and rock wall are predicted. The dynamic response signals were measured in the field using prestressed anchors pre-tightened to different torques. The effects from the support plate on the dynamic response were recorded and the results compared to the predictions of pre-stressed anchor. This work provides a theoretical reference for the signal processing of dynamic reflected wave signals in anchor bolts.
基金Project supported by the National Natural Science Foundation of China(No.11702329)the Open Project Program of the Key Laboratory of Aerodynamic Noise Control of China Aerodynamics Research and Development Center(CARDC)(No.ANCL20180103)+1 种基金the CARDC Fundamental and Frontier Technology Research Fund(No.PJD20180143)the Open Project Program of Rotor Aerodynamics Key Laboratory(No.RAL20180403),China。
文摘The relationship between the number of detonation waves and the evolution process of the flow field in a rotating detonation engine was investigated through a numerical analysis.The simulations were based on the Euler equation and a detailed chemical reaction model.In the given engine model,the flow-field evolution became unstable when a single detonation wave was released.New detonation waves formed spontaneously,changing the operational mode from single-wave to four-wave.However,when two or three detonation waves were released,the flow field evolved in a quasi-steady manner.Further study revealed that the newly formed detonation wave resulted from an accelerated chemical reaction on the contact surface between the detonation products and the reactive mixture.To satisfy the stable propagation requirements of detonation waves,we proposed a parameter called NL,which can be compared with the number of detonation waves in the combustor to predict the evolution(quasi-stable or unstable)of the flow field.Finally,we verified the effectiveness of NL in a redesigned engine.This study may assist the operational mode control in rotating detonation engine experiments.
文摘Heterogeneous catalysts are promising candidates for use in organic reactions due to their advantages in separation, recovery, and environment compatibility. In this work, an active porous catalyst denoted as Pd embedded in porous carbon (Pd@CMK-3) has been prepared by a strategy involving immersion, ammonia- hydrolysis, and heating procedures. Detailed characterization of the catalyst revealed that Pd(0) and Pd(I1) species co-exist and were embedded in the matrix of the porous carbon (CMK-3). The as-prepared catalyst has shown high activity toward Suzuki reactions. Importantly, if the reaction mixture was homogenized by two minutes of ultrasonication rather than magnetic stirring before heating, the resistance to mass transfer in the pore channels was significantly reduced. As a result, the reactions proceeded more rapidly and a four-fold increase in the turnover frequency (TOF) could be obtained. When the ultrasonication was employed throughout the entire reaction process, the conversion could also exceed 90% even without the protection of inert gas, and although the reaction temperature was lowered to 30 ℃. This work provides a method for fabricating highly active porous carbon encapsulated Pd catalysts for Suzuki reactions and proves that the problem of mass transfer in porous catalysts can be conveniently resolved by ultrasonication without any chemical modification being necessary.
基金supported by the National Natural Science Foundation of China (20673074 & 20973119)
文摘A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.
基金supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning (Grant No. PHR201107145)
文摘The partial derivative equations of Zoeppritz equations are established and the derivatives of each matrix entry with respect to wave vectors are derived in this paper.By solving the partial derivative equations we obtained the partial derivatives of seismic wave reflection coefficients with respect to wave vectors,and computed the Goos-Hnchen shift for reflected P-and VS-waves.By plotting the curves of Goos-Hnchen shift,we gained some new insight into the lateral shift of seismic reflection wave.The lateral shifts are very large for glancing wave or the wave of the incidence angle near the critical angle,meaning that the seismic wave propagates a long distance along the reflection interface before returning to the first medium.For the reflection waves of incidence angles away from the critical angle,the lateral shift is in the same order of magnitude as the wavelength.The lateral shift varies significantly with different reflection interfaces.For example,the reflected P-wave has a negative shift at the reflection interface between mudstone and sandstone.The reflected VS-wave has a large lateral shift at or near the critical angle.The lateral shift of the reflected VS-wave tends to be zero when the incidence angle approaches 90°.These observations suggest that Goos-Hnchen effect has a great influence on the reflection wave of wide-angles.The correction for the error caused by Goos-Hnchen effect,therefore,should be made before seismic data processing,such as the depth migration and the normal-moveout correction.With the theoretical foundation established in this paper,we can further study the correction of Goos-Hnchen effect for the reflection wave of large incidence angle.