The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of signifi- cant overestimation in quantitative precipitation estimation (QPE) based on the Z-R (refl...The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of signifi- cant overestimation in quantitative precipitation estimation (QPE) based on the Z-R (reflectivity factor-rain rate) relationship. The effects of the bright band on radar-based QPE can be eliminated by vertical profile of reflectivity (VPR) correction. In this study, we applied bright-band correction algorithms to evaluate three different bands (S-, C- and X-band) of dual-polarized radars and to reduce overestimation errors in Z-R relationship-based QPEs. After the reflectivity was corrected by the algo- rithms using average VPR (AVPR) alone and a combination of average VPR and the vertical profile of the copolar correlation coefficient (AVPR+CC), the QPEs were derived. The bright-band correction and resulting QPEs were evaluated in eight precipitation events by comparing to the uncorrected reflectivity and rain-gange observations, separately. The overestimation of Z-R relationship-based QPEs associated with the bright band was reduced after correction by the two schemes for which hourly rainfall was less than 5 mm. For the verification metrics of RMSE (root-mean-square error), RMAE (relative mean absolute error) and RMB (relative mean bias) of QPEs, averaged over all eight cases, the AVPR method improved from 2.28, 0.94 and 0.78 to 1.55, 0.60 and 0.40, respectively, while the AVPR+CC method improved to 1.44, 0.55 and 0.30, respectively. The QPEs after AVPR+CC correction had less overestimation than those after AVPR correction, and similar conclusions were drawn for all three different bands of dual-polarized radars.展开更多
In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inac...In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inaccurate or even unsafe results.Therefore,it was necessary to find a new correction method for complex reactions.In this work,esterification of acetic anhydride by methanol was chosen as an object reaction of study.The reaction was studied under different conditions by Reaction Calorimeter(RC1).Then,Thermal Safety Software(TSS)was used to establish the kinetic model and estimate the parameters,where,activation energies for three stages were67.09,81.02,73.77 kJ?mol^(-1)respectively,and corresponding frequency factors in logarithmic form were 16.05,19.59,15.72 s^(-1).In addition,two adiabatic tests were performed by Vent Sizing Package2(VSP2).For accurate correction of VSP2 tests,a new correction method based on Enhanced Fisher method was proposed.Combined with kinetics,adiabatic correction of esterification reaction was achieved.Through this research,accurate kinetic parameters for a three-step kinetic model of the esterification reaction were acquired.Furthermore,the correlation coefficients between simulated curves and corrected curves were 0.976 and 0.968,which proved the accuracy of proposed new adiabatic correction method.Based on this new method,conservative corrected results were able to be acquired and be applied in safety assessment.展开更多
基金funded by a China National 973 Program on Key Basic Research project (Grant No.2014CB441401)the Beijing Municipal Natural Science Foundation (Grant No.8141002)the Public Welfare Industry (Meteorology) of China (Grant No.GYHY201106046)
文摘The bright band, a layer of enhanced radar reflectivity associated with melting ice particles, is a major source of signifi- cant overestimation in quantitative precipitation estimation (QPE) based on the Z-R (reflectivity factor-rain rate) relationship. The effects of the bright band on radar-based QPE can be eliminated by vertical profile of reflectivity (VPR) correction. In this study, we applied bright-band correction algorithms to evaluate three different bands (S-, C- and X-band) of dual-polarized radars and to reduce overestimation errors in Z-R relationship-based QPEs. After the reflectivity was corrected by the algo- rithms using average VPR (AVPR) alone and a combination of average VPR and the vertical profile of the copolar correlation coefficient (AVPR+CC), the QPEs were derived. The bright-band correction and resulting QPEs were evaluated in eight precipitation events by comparing to the uncorrected reflectivity and rain-gange observations, separately. The overestimation of Z-R relationship-based QPEs associated with the bright band was reduced after correction by the two schemes for which hourly rainfall was less than 5 mm. For the verification metrics of RMSE (root-mean-square error), RMAE (relative mean absolute error) and RMB (relative mean bias) of QPEs, averaged over all eight cases, the AVPR method improved from 2.28, 0.94 and 0.78 to 1.55, 0.60 and 0.40, respectively, while the AVPR+CC method improved to 1.44, 0.55 and 0.30, respectively. The QPEs after AVPR+CC correction had less overestimation than those after AVPR correction, and similar conclusions were drawn for all three different bands of dual-polarized radars.
文摘In the field of adiabatic correction for complex reactions,a simple one-stage kinetic model was used to estimate the real reaction kinetics.However,this assumption simplified the real process,inevitably generated inaccurate or even unsafe results.Therefore,it was necessary to find a new correction method for complex reactions.In this work,esterification of acetic anhydride by methanol was chosen as an object reaction of study.The reaction was studied under different conditions by Reaction Calorimeter(RC1).Then,Thermal Safety Software(TSS)was used to establish the kinetic model and estimate the parameters,where,activation energies for three stages were67.09,81.02,73.77 kJ?mol^(-1)respectively,and corresponding frequency factors in logarithmic form were 16.05,19.59,15.72 s^(-1).In addition,two adiabatic tests were performed by Vent Sizing Package2(VSP2).For accurate correction of VSP2 tests,a new correction method based on Enhanced Fisher method was proposed.Combined with kinetics,adiabatic correction of esterification reaction was achieved.Through this research,accurate kinetic parameters for a three-step kinetic model of the esterification reaction were acquired.Furthermore,the correlation coefficients between simulated curves and corrected curves were 0.976 and 0.968,which proved the accuracy of proposed new adiabatic correction method.Based on this new method,conservative corrected results were able to be acquired and be applied in safety assessment.