Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate ...Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5°C,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits.展开更多
The characteristics of chirped and phase-shifted fiber Bragg gratings have been investigated by the use of transfer matrix formulation. While the characteristics of a chirped and phase-shifted fiber Bragg grating are ...The characteristics of chirped and phase-shifted fiber Bragg gratings have been investigated by the use of transfer matrix formulation. While the characteristics of a chirped and phase-shifted fiber Bragg grating are the same as those of non-chirped one in some important aspects, both the reflection and transmission windows of a chirped and phase-shifted fiber Bragg grating can be broadened in a wide range. Therefore, chirped and phase-shifted fiber Bragg gratings will have appScations in WDM or DWDM optical communication systems. The work in this paper can be used to design the new devices based on chirped and phase-shifted fiber Bragg gratings.展开更多
Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of undergrou...Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health(NIOSH). A commercially available, digital single-lens reflex(DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject,camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio(F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.展开更多
In order to improve the nonlinear optical property and stability of azo-dye chromophore, the nonlinear optical polyimide (NLOPI) attached with azo chromophore side chain is synthesized by diazo coupling reaction of 4-...In order to improve the nonlinear optical property and stability of azo-dye chromophore, the nonlinear optical polyimide (NLOPI) attached with azo chromophore side chain is synthesized by diazo coupling reaction of 4-nitrobenzenediazonium tetrafloroborate. The designed chemical structure of production can be proved in the infrared spectrum and ultraviolet-visible absorption spectrum. The NLOPI exhibited UV-Vis absorption of the azobenzene chromophore in the vicinity of the wavelengths of 330 and 490 nm. The broad amorphous peak proved that the NLOPI was amorphous with a little periodical structure along the side chain. According to transmission electron microscope, the NLOPI film was homogeneous. NLOPI only displayed a decrease in mass of about 5% at the temperature of 400 ℃ through thermogravimetric analysis.展开更多
The FlaA gene from Vibrio harveyi marker, was cloned into the eukaryotic expression with a short nucleotide sequence encoding the Flag vector pcDNA3.1(+) (designated as pcFlaA). Ninety grouper (Epinephelus awoar...The FlaA gene from Vibrio harveyi marker, was cloned into the eukaryotic expression with a short nucleotide sequence encoding the Flag vector pcDNA3.1(+) (designated as pcFlaA). Ninety grouper (Epinephelus awoara) were separated into three equal size groups. An experimental group was immunized with pcFlaA, Control I group was immunized with the vector pcDNA3.1(+), and Control 1I group was immunized with PBS. The expression of pcFlaA mRNA and protein was examined using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. We also evaluated the immunogenicity and protective efficacy of pcFlaA against V. harveyi by measuring the lymphocyte proliferation response and serum levels of specific antibody and conducting a bacterial challenge test. We successfully transfected the fish muscle with pcFlaA. The pcFlaA mRNA and protein was expressed in the muscle cells for up to one month following injection. The proliferation response of lymphocytes in fish immunized with pcFlaA was significantly higher than in control group II. Furthermore, the immunized fish generated specific antibody. The vaccination also resulted in significantly higher survival during the bacterial challenge test.展开更多
This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete a...This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).展开更多
A solid-solution-phase Ba1.75Ca1.25MgSi2O8: Eu2+, Mn2+ phosphor in the photosynthetic action spectrum with dual band emissions at 438 nm and 660 nm is fabricated. X-ray diffraction (XRD) confirms the presence of ...A solid-solution-phase Ba1.75Ca1.25MgSi2O8: Eu2+, Mn2+ phosphor in the photosynthetic action spectrum with dual band emissions at 438 nm and 660 nm is fabricated. X-ray diffraction (XRD) confirms the presence of the solid-solution phase. With the supporting information from the diffuse reflection spectrum, a feasible way to obtain higher energy-transfer (ET) efficiency is attained, and the ET efficiency of Eu2+-Mn2+ is enhanced to 76%. The mechanism of this enhancement is owing to variation of the solid solution composition of Ca3MgSi208 and Ba3MgSi2Os, which contributes to the extension of the critical distance. Temperature-dependent results show an en- hancement which is attributed to Ca. These enhancements show great promise for improving coo-lighting devices.展开更多
The ultra-small textured surface of multicrystalline silicon solar cell,prepared by electroless chemical-etching method,shows an excellent anti-reflection property over a wide spectral bandwidth.A novel back surface p...The ultra-small textured surface of multicrystalline silicon solar cell,prepared by electroless chemical-etching method,shows an excellent anti-reflection property over a wide spectral bandwidth.A novel back surface protection method and front surface passivation method have been used in the multicrystalline solar cells with ultra-small textured surfaces.With these improvements,the back surface remains intact after the etch process and the efficient minority lifetime is apparently increased.The test result shows that the solar cell with ultra-small textured surface can obtain better electrical performances by these improvements.展开更多
A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient el...A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient electron injection capability from high work-function metals. The relationships between the photophysical and electrochemical properties and the polymer backbone structure were systematically investigated. These alcohol-soluble carbazole-based copolymers were used as cathode interlayers between the high work-function metal A1 cathode and P-PPV emissive layer in polymer light-emitting diodes with device structure of ITO/PEDOT:PSS/P-PPV/interlayer/A1. The resulting devices exhibited improved performance due to the better electron injection/transporting ability of the designed copolymers from A1 cathode to the light-emitting layer.展开更多
The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacem...The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.展开更多
A novel metal/semiconductor photocatalyst,Cu nanoparticles(NPs)modified TiO2 hollow spheres(Cu/TiO2),was designed for efficient photocatalytic overall water splitting(POWS)under both ultraviolet(UV)and visible(Vis)lig...A novel metal/semiconductor photocatalyst,Cu nanoparticles(NPs)modified TiO2 hollow spheres(Cu/TiO2),was designed for efficient photocatalytic overall water splitting(POWS)under both ultraviolet(UV)and visible(Vis)light.This Cu/TiO2 photocatalyst possesses excellent POWS performance under Vis light at the highest level among the reported TiO2-based photocatalysts.Interestingly,the metal/semiconductor junction formed between Cu and TiO2 enables controlled water-oxidation product selectivity(H2O2 or O2)via different reaction pathways regulated by irradiation wavelengths.Under UV light,the electrons excited in TiO2 are captured by Cu NPs through the Cu/TiO2 Schottky interface for H2 production,with the photoholes in TiO2 producing H2O2 through a two-electron process;whilst under Vis light,Cu NPs act as plasmon to inject hot electrons to TiO2 for H2 production,while O2 is produced by hot holes on Cu NPs via a four-electron process.This rational design of function-switchable metal/semiconductor junction may be helpful to understand the mechanisms for POWS with desired gas/liquid water-oxidation products.展开更多
A series of Tb3+ doped Na Y(Mo O4)2 are synthesized by a solid-state reaction at 550 °C for 4 h, and their luminescent properties are investigated. The phase formation is carried out with X-ray powder diffraction...A series of Tb3+ doped Na Y(Mo O4)2 are synthesized by a solid-state reaction at 550 °C for 4 h, and their luminescent properties are investigated. The phase formation is carried out with X-ray powder diffraction analysis, and there is no other crystalline phase except Na Y(Mo O4)2. Na Y(Mo O4)2:Tb3+ can produce the green emission under 290 nm radiation excitation, and the luminescence emission peak at 545 nm corresponds to the 5D4→7F5 transition of Tb3+. The emission intensity of Tb3+ in Na Y(Mo O4)2 is enhanced with the increase of Tb3+ concentration, and there is no concentration quenching effect. The phenomena are proved by the decay curves of Tb3+. Moreover, the Commission International de I'Eclairage(CIE) chromaticity coordinates of Na Y(Mo O4)2:Tb3+ locate in the green region.展开更多
基金This work was supported by the National Natura]Science Foundation of China(No.22073090 No.21991132,No.52021002)the National Key R&D Program of China(No.2020YFA0710703)the Funds of Youth Innovation Promotion Association and the Fun damental Research Funds for the Central Universities.
文摘Fluorescent labels are widely used in the characterizations of DNA-based reaction network operations.We systematically studied the effects of commonly used fluorescent pairs on thermal stabilities of signal-substrate duplex and the strand displacement kinetics.It is demonstrated that the modifications of duplex with fluorescent pairs stabilize DNA duplex by up to 3.5°C,and the kinetics of DNA strand displacement circuit is also evidently slowed down.These results highlight the importance of fluorescent pairs towards the kinetic modulation in designing nucleic acid probes and complex DNA dynamic circuits.
文摘The characteristics of chirped and phase-shifted fiber Bragg gratings have been investigated by the use of transfer matrix formulation. While the characteristics of a chirped and phase-shifted fiber Bragg grating are the same as those of non-chirped one in some important aspects, both the reflection and transmission windows of a chirped and phase-shifted fiber Bragg grating can be broadened in a wide range. Therefore, chirped and phase-shifted fiber Bragg gratings will have appScations in WDM or DWDM optical communication systems. The work in this paper can be used to design the new devices based on chirped and phase-shifted fiber Bragg gratings.
文摘Understanding coal mine rib behavior is important for inferring pillar loading conditions as well as ensuring the safety of miners who are regularly exposed to ribs. Due to the variability in the geometry of underground openings and ground behavior, point measurements often fail to capture the true movement of mine workings. Photogrammetry is a potentially fast, cheap, and precise supplemental measurement tool in comparison to extensometers, tape measures, or laser range meters, but its application in underground coal has been limited. The practical use of photogrammetry was tested at the Safety Research Coal Mine, National Institute for Occupational Safety and Health(NIOSH). A commercially available, digital single-lens reflex(DSLR) camera was used to perform the photogrammetric surveys for the experiment. Several experiments were performed using different lighting conditions, distances to subject,camera settings, and photograph overlaps, with results summarized as follows: the lighting method was found to be insignificant if the scene was appropriately illuminated. It was found that the distance to the subject has a minimal impact on result accuracy, and that camera settings have a significant impact on the photogrammetric quality of images. An increasing photograph resolution was preferable when measuring plane orientations; otherwise a high point cloud density would likely be excessive. Focal ratio(F-stop) changes affect the depth of field and image quality in situations where multiple angles are necessary to survey cleat orientations. Photograph overlap is very important to proper three-dimensional reconstruction, and at least 60% overlap between photograph pairs is ideal to avoid unnecessary post-processing. The suggestions and guidelines proposed are designed to increase the quality of photogrammetry inputs and outputs as well as minimize processing time, and serve as a starting point for an underground coal photogrammetry study.
文摘In order to improve the nonlinear optical property and stability of azo-dye chromophore, the nonlinear optical polyimide (NLOPI) attached with azo chromophore side chain is synthesized by diazo coupling reaction of 4-nitrobenzenediazonium tetrafloroborate. The designed chemical structure of production can be proved in the infrared spectrum and ultraviolet-visible absorption spectrum. The NLOPI exhibited UV-Vis absorption of the azobenzene chromophore in the vicinity of the wavelengths of 330 and 490 nm. The broad amorphous peak proved that the NLOPI was amorphous with a little periodical structure along the side chain. According to transmission electron microscope, the NLOPI film was homogeneous. NLOPI only displayed a decrease in mass of about 5% at the temperature of 400 ℃ through thermogravimetric analysis.
基金Supported by Fujian Science and Technology Innovation Foundation for Young Scientists (No.2006F3096)Scientific Research Foundation of Jimei University
文摘The FlaA gene from Vibrio harveyi marker, was cloned into the eukaryotic expression with a short nucleotide sequence encoding the Flag vector pcDNA3.1(+) (designated as pcFlaA). Ninety grouper (Epinephelus awoara) were separated into three equal size groups. An experimental group was immunized with pcFlaA, Control I group was immunized with the vector pcDNA3.1(+), and Control 1I group was immunized with PBS. The expression of pcFlaA mRNA and protein was examined using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. We also evaluated the immunogenicity and protective efficacy of pcFlaA against V. harveyi by measuring the lymphocyte proliferation response and serum levels of specific antibody and conducting a bacterial challenge test. We successfully transfected the fish muscle with pcFlaA. The pcFlaA mRNA and protein was expressed in the muscle cells for up to one month following injection. The proliferation response of lymphocytes in fish immunized with pcFlaA was significantly higher than in control group II. Furthermore, the immunized fish generated specific antibody. The vaccination also resulted in significantly higher survival during the bacterial challenge test.
文摘This paper investigates the modal properties of semiconductor lasers operating in the strong-feedback regime. Analytical expressions are developed based on an iterative travelling-wave model, which enable a complete and quantitative description of a compound cavity mode in its steady state. Additional information is provided about the physical inside into a compound laser system, such as a bifurcation diagram of the compound cavity modes for full variation range (from 0 to 1) of the external reflection coefficient and a more general shape for the diagram of photon density versus mode phase - this latter will reduce to the classical "ellipse" in the weak-feedback regime. It is shown that in the strong-feedback regime, a feedback laser is characterized by a small mode number and a high density of photons. This behavior confirms previous experimental observations, showing that beyond the coherence-collapse regime, the compound laser system could be re-stabilized, and that as a result power-enhanced low-noise stable laser operation with quasi-uniform pulsation is possible with external-mirror reflectivity close to 1. Moreover, it is also shown that for a compound system operating in the strong-feedback regime, an anti-reflection treatment of a laser can significantly reduce its current threshold, and that in the absence of this treatment excitation of a minimum-linewidth mode with higher output power would be possible inside such a system. Finally, it is shown that in the weak-feedback regime except for a phase shift the iterative travelling-wave model will reduce to the Lang-Kobayashi model in cases where the product of the feedback rate and the internal round-trip time is much less than unity (that would mean in situations of as-cleaved lasers).
基金supported by the National Natural Science Foundation of China(No.21076161)
文摘A solid-solution-phase Ba1.75Ca1.25MgSi2O8: Eu2+, Mn2+ phosphor in the photosynthetic action spectrum with dual band emissions at 438 nm and 660 nm is fabricated. X-ray diffraction (XRD) confirms the presence of the solid-solution phase. With the supporting information from the diffuse reflection spectrum, a feasible way to obtain higher energy-transfer (ET) efficiency is attained, and the ET efficiency of Eu2+-Mn2+ is enhanced to 76%. The mechanism of this enhancement is owing to variation of the solid solution composition of Ca3MgSi208 and Ba3MgSi2Os, which contributes to the extension of the critical distance. Temperature-dependent results show an en- hancement which is attributed to Ca. These enhancements show great promise for improving coo-lighting devices.
基金supported by the National Basic Research Program of China("973" Project) (Grant No. 2009CB939703)the National Natural Science Foundation of China (Grant Nos. 11104319,51172268)the Chinese Academy of Solar Energy Action Plan and by Beijing Science and Technology Project (Grant No. Y2BK024001)
文摘The ultra-small textured surface of multicrystalline silicon solar cell,prepared by electroless chemical-etching method,shows an excellent anti-reflection property over a wide spectral bandwidth.A novel back surface protection method and front surface passivation method have been used in the multicrystalline solar cells with ultra-small textured surfaces.With these improvements,the back surface remains intact after the etch process and the efficient minority lifetime is apparently increased.The test result shows that the solar cell with ultra-small textured surface can obtain better electrical performances by these improvements.
基金financially supported by the National Basic Research Program of China (2009CB623601,2009CB930604,2011AA03A110)the National Natural Science Foundation of China (21125419,50990065,51073057,91233116)+1 种基金the Guangdong Natural Science Foundation (S2012030006230)the Research Fund for the Doctoral Program of Higher Education of China (20120172140001)
文摘A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient electron injection capability from high work-function metals. The relationships between the photophysical and electrochemical properties and the polymer backbone structure were systematically investigated. These alcohol-soluble carbazole-based copolymers were used as cathode interlayers between the high work-function metal A1 cathode and P-PPV emissive layer in polymer light-emitting diodes with device structure of ITO/PEDOT:PSS/P-PPV/interlayer/A1. The resulting devices exhibited improved performance due to the better electron injection/transporting ability of the designed copolymers from A1 cathode to the light-emitting layer.
文摘The grating eddy current displacement sensor (GECDS) for distance or position measurement used in watertight electronic calipers was described. The sensor relies on repetitive variation of inductance against displacement caused by the change of coupling areas between moving coils and static reflectors. The investigations focused on setting up and utilizing a computer model of the 3D eddy current fields and geometry to analyze causes of the production of measurement blind areas, and to investigate effects of the sensor parameters, such as axial gap between coils and reflectors, reflector length and reflector width on characteristics of the sensor. Simulation results indicated that the sensor has the smallest nonlinearity error of 0.15%, which agrees well with the experimental results.
基金the National Natural Science Foundation of China(51672210 and 21875183)the National Key Research and Development Program of China(2017YFE0193900)+2 种基金National Program for Support of Top-notch Young ProfessionalsFundamental Research Funds for the Central Universities,Natural Science Basic Research Plan in Shaanxi Province of China(2018JQ2028)China Postdoctoral Science Foundation(2018M640981)。
文摘A novel metal/semiconductor photocatalyst,Cu nanoparticles(NPs)modified TiO2 hollow spheres(Cu/TiO2),was designed for efficient photocatalytic overall water splitting(POWS)under both ultraviolet(UV)and visible(Vis)light.This Cu/TiO2 photocatalyst possesses excellent POWS performance under Vis light at the highest level among the reported TiO2-based photocatalysts.Interestingly,the metal/semiconductor junction formed between Cu and TiO2 enables controlled water-oxidation product selectivity(H2O2 or O2)via different reaction pathways regulated by irradiation wavelengths.Under UV light,the electrons excited in TiO2 are captured by Cu NPs through the Cu/TiO2 Schottky interface for H2 production,with the photoholes in TiO2 producing H2O2 through a two-electron process;whilst under Vis light,Cu NPs act as plasmon to inject hot electrons to TiO2 for H2 production,while O2 is produced by hot holes on Cu NPs via a four-electron process.This rational design of function-switchable metal/semiconductor junction may be helpful to understand the mechanisms for POWS with desired gas/liquid water-oxidation products.
基金supported by the National Natural Science Foundation of China(No.50902042)the Natural Science Foundation of Hebei Province(Nos.A2014201035 and E2014201037)the Education Office Research Foundation of Hebei Province(Nos.ZD2014036 and QN2014085)
文摘A series of Tb3+ doped Na Y(Mo O4)2 are synthesized by a solid-state reaction at 550 °C for 4 h, and their luminescent properties are investigated. The phase formation is carried out with X-ray powder diffraction analysis, and there is no other crystalline phase except Na Y(Mo O4)2. Na Y(Mo O4)2:Tb3+ can produce the green emission under 290 nm radiation excitation, and the luminescence emission peak at 545 nm corresponds to the 5D4→7F5 transition of Tb3+. The emission intensity of Tb3+ in Na Y(Mo O4)2 is enhanced with the increase of Tb3+ concentration, and there is no concentration quenching effect. The phenomena are proved by the decay curves of Tb3+. Moreover, the Commission International de I'Eclairage(CIE) chromaticity coordinates of Na Y(Mo O4)2:Tb3+ locate in the green region.