In the enzymatic membrane reactor for separating casein hydrolysate, backflushing technology has been used to decrease the fouling of the membrane. Predication of the backflushing efficiency poses a complex non-linear...In the enzymatic membrane reactor for separating casein hydrolysate, backflushing technology has been used to decrease the fouling of the membrane. Predication of the backflushing efficiency poses a complex non-linear problem as the system integrates enzymatic hydrolysis, membrane separation and periodic backflushing together. In this paper an alternative artificial neural network approach is developed to predict the backflushing efficiency as a function of duration and interval. A contour plot of backflushing performance is presented to model these effects, and the backflushing conditions have been optimized as duration of 10 s and interval of 10 min using this neural network. Also, simple neural networks are established to predict the time evolution of flux before and after backflushing. The results predicted by the models are in good agreement with the experimental data, and the average deviations for all the cases are well within ±5%. The neural network approach is found to be capable of modeling the backflushing with confidence.展开更多
In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning has crucial effects on the long-term stable operation. In order to get a clear insight into the nature of this cleaning process...In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning has crucial effects on the long-term stable operation. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for industrial applications, the flow in ceramic candle filter was investigated. The flow in the pulse-jetspace and inside the ceramic candle is regarded as two- dimensional, unsteady, compressible flow, and numerical simulation is carried out by computational fluid dynamics. The numerical predictions of flow field are in good agreement with the experimental measurements. Effects of the candle diameter, the separation distance between the nozzle and the candle injector and the length of the candle on the flowfield have been numerically analyzed to provide the basis for the optimum design of the pulse cleaning system.展开更多
The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation met...The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.展开更多
Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of i...Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.展开更多
Wastewater from the production of cellulosic ethanol was treated by the processes of internal micro-electrolysis method +ABR+UASB +MBR. The results of running indicated that, when COD is 12000 mg/L and HRT of UASB ...Wastewater from the production of cellulosic ethanol was treated by the processes of internal micro-electrolysis method +ABR+UASB +MBR. The results of running indicated that, when COD is 12000 mg/L and HRT of UASB is 48 h, the COD removal rate reaches 72% and HRT of MBR is 20 h, COD removal rate is between 80.8% and 87.5%. The effluent COD concentration stabilized at 301- 537 mg/L, it indicates that the MBR system has a strong ability to resist impact load.展开更多
The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fibe...The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fiber laser is an effective method that can recover optical properties of the mirror surface. The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally researched. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of radiation effect on the deposited surface. Efficient cleaning is ensured by radiation with the power density of less than 107 W/cm2. At this relatively low power density, pollutions are removed in a solid phase and the thermal effect on the mirror is insignificant. Preliminary experiments of the metal mirrors cleaning by fiber laser radiation have demonstrated the possibility of hardware implementation techniques.展开更多
Experiments were carried out to eliminate the screech tone generated from a supersonic jet. Compressed air was passed through a circular convergent nozzle preceded by a straight tube of same diameter. In order to redu...Experiments were carried out to eliminate the screech tone generated from a supersonic jet. Compressed air was passed through a circular convergent nozzle preceded by a straight tube of same diameter. In order to reduce the jet screech a spherical reflector was used and placed at the nozzle exit. The placement of the spherical reflector at the nozzle exit controlled the location of the image source as well as minimized the sound pressure at the nozzle exit. The weak sound pressure did not excite the unstable disturbance at the exit. Thus the loop of the feedback mechanism could not be accomplished and the jet screech was eliminated. The technique of screech reduction with a flat plate was also examined and compared with the present method. A good and effective performance in canceling the screech component by the new method was found by the investigation. Experimental results indicate that the new system suppresses not only the screech tones but also the broadband noise components and reduces the overall noise of the jet flow. The spherical reflector was found very effective in reducing overall sound pressure level in the upstream region of the nozzle compared to a flat plate. The proposed spherical reflector can, accordingly, protect the upstream noise propagation.展开更多
基金Supported by the National Natural Science Foundation of China (No. 20306023).
文摘In the enzymatic membrane reactor for separating casein hydrolysate, backflushing technology has been used to decrease the fouling of the membrane. Predication of the backflushing efficiency poses a complex non-linear problem as the system integrates enzymatic hydrolysis, membrane separation and periodic backflushing together. In this paper an alternative artificial neural network approach is developed to predict the backflushing efficiency as a function of duration and interval. A contour plot of backflushing performance is presented to model these effects, and the backflushing conditions have been optimized as duration of 10 s and interval of 10 min using this neural network. Also, simple neural networks are established to predict the time evolution of flux before and after backflushing. The results predicted by the models are in good agreement with the experimental data, and the average deviations for all the cases are well within ±5%. The neural network approach is found to be capable of modeling the backflushing with confidence.
基金Supported by the National Natural Science Foundation of China(No.59976023)
文摘In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning has crucial effects on the long-term stable operation. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for industrial applications, the flow in ceramic candle filter was investigated. The flow in the pulse-jetspace and inside the ceramic candle is regarded as two- dimensional, unsteady, compressible flow, and numerical simulation is carried out by computational fluid dynamics. The numerical predictions of flow field are in good agreement with the experimental measurements. Effects of the candle diameter, the separation distance between the nozzle and the candle injector and the length of the candle on the flowfield have been numerically analyzed to provide the basis for the optimum design of the pulse cleaning system.
文摘The non-linear finite element software ABAQUS was used to simulate the dynamic response of a marine supercharged boiler when subjected to impact loading. Shock resistance was analyzed by the time-domain simulation method. After exhaustive simulations,the effect of air pressure induced by different working conditions on the shock response of a supercharged boiler was reviewed,leading to conclusions about the variability of structural response with different loading parameters. In order to simulate the real impulsive environments of supercharged boilers,the integration of equipment and ship structure was then primarily used to analyze shock response. These distinctly different equipment shock test methods,run under equivalent work conditions,were compared and the causes of discrepancy were analyzed. The main purpose of this paper is to present references for the anti-shock design of marine supercharged boilers.
基金Supported by the National Natural Science Foundation of China(21206002,21121064,20990224)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A03)
文摘Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.
文摘Wastewater from the production of cellulosic ethanol was treated by the processes of internal micro-electrolysis method +ABR+UASB +MBR. The results of running indicated that, when COD is 12000 mg/L and HRT of UASB is 48 h, the COD removal rate reaches 72% and HRT of MBR is 20 h, COD removal rate is between 80.8% and 87.5%. The effluent COD concentration stabilized at 301- 537 mg/L, it indicates that the MBR system has a strong ability to resist impact load.
文摘The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fiber laser is an effective method that can recover optical properties of the mirror surface. The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally researched. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of radiation effect on the deposited surface. Efficient cleaning is ensured by radiation with the power density of less than 107 W/cm2. At this relatively low power density, pollutions are removed in a solid phase and the thermal effect on the mirror is insignificant. Preliminary experiments of the metal mirrors cleaning by fiber laser radiation have demonstrated the possibility of hardware implementation techniques.
文摘Experiments were carried out to eliminate the screech tone generated from a supersonic jet. Compressed air was passed through a circular convergent nozzle preceded by a straight tube of same diameter. In order to reduce the jet screech a spherical reflector was used and placed at the nozzle exit. The placement of the spherical reflector at the nozzle exit controlled the location of the image source as well as minimized the sound pressure at the nozzle exit. The weak sound pressure did not excite the unstable disturbance at the exit. Thus the loop of the feedback mechanism could not be accomplished and the jet screech was eliminated. The technique of screech reduction with a flat plate was also examined and compared with the present method. A good and effective performance in canceling the screech component by the new method was found by the investigation. Experimental results indicate that the new system suppresses not only the screech tones but also the broadband noise components and reduces the overall noise of the jet flow. The spherical reflector was found very effective in reducing overall sound pressure level in the upstream region of the nozzle compared to a flat plate. The proposed spherical reflector can, accordingly, protect the upstream noise propagation.