Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the ...Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory.展开更多
The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of ma...The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.展开更多
Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations ...Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations induced by draft tube vortices in a model Francis turbine,by solving RANS equations with RNG k-turbulence model and ZGB cavitation model,with modified turbulence viscosity.Three cases with different flow rates at high head were studied.In the study case of part load,two modes of revolutions with the same rotating direction,revolution around the axis of the draft tube cone,and revolution around the core of the vortex rope,can be recognized.The elliptical shaped vortex rope causes anisotropic characteristics of pressure fluctuations around the centerline of the draft tube cone.By analyzing the phase angles of the pressure fluctuations,the role of the vortex rope as an exciter in the oscillating case can be recognized.An analysis of Batchelor instability,i.e.instability in q-vortex like flow structure,has been carried out on the draft tube vortices in these three cases.It can be concluded that the trajectory for study case with part load lies in the region of absolute instability(AI),and it lies in the region of convective instability(CI)for study case with design flow rate.Trajectory for study case with over load lies in the AI region at the inlet of the draft tube,and enters CI region near the end of the elbow.展开更多
文摘Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory.
基金Project(51276131)supported by the National Natural Science Foundation of ChinaProject(ZRZ0316)supported by the Natural Science Foundation of Hubei Province,ChinaProject(2013070104010025)supported by the Morning Glory Project of Wuhan Science and Technology Bureau,China
文摘The mixing time of impact zone in liquid-continuous impinging streams reactor(LISR) is theoretically calculated by empirical model and modern micromixing model of the fluid mixing process, and the variation laws of macromixing time and micromixing time are quantitatively discussed. The results show that under a continuous and stable operating condition, as the paddle speed increases, the macromixing time and micromixing time calculated by the two models both decrease, even in a linkage equilibrium state. Simultaneously, as the paddle speed increases, the results figured by the two models tend to be consistent. It indicates that two models both are more suitable for calculation of mixing time in high paddle speed. Compared with the existing experimental results of this type of reactor, the mixing time computed in the speed of 1500 r/min is closer to it. These conclusions can provide an important reference for systematically studying the strengthening mechanism of LISR under continuous mixing conditions.
基金supported by the National Natural Science Foundation of China(Grant No.51076077)National Key Technology R&D Program of China(Grant No.2008BAC48B02)
文摘Draft tube vortex is one of the main causes of hydraulic instability in hydraulic reaction turbines,in particular Francis turbines.A method of cavitation calculations was proposed to predict the pressure fluctuations induced by draft tube vortices in a model Francis turbine,by solving RANS equations with RNG k-turbulence model and ZGB cavitation model,with modified turbulence viscosity.Three cases with different flow rates at high head were studied.In the study case of part load,two modes of revolutions with the same rotating direction,revolution around the axis of the draft tube cone,and revolution around the core of the vortex rope,can be recognized.The elliptical shaped vortex rope causes anisotropic characteristics of pressure fluctuations around the centerline of the draft tube cone.By analyzing the phase angles of the pressure fluctuations,the role of the vortex rope as an exciter in the oscillating case can be recognized.An analysis of Batchelor instability,i.e.instability in q-vortex like flow structure,has been carried out on the draft tube vortices in these three cases.It can be concluded that the trajectory for study case with part load lies in the region of absolute instability(AI),and it lies in the region of convective instability(CI)for study case with design flow rate.Trajectory for study case with over load lies in the AI region at the inlet of the draft tube,and enters CI region near the end of the elbow.