Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To red...Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To reduce energy consumption and improve energy utilization efficiency,highly active electrocatalytic electrodes are essential for lowering the energy barrier of the HER.Catalysts featuring multiple interfaces have attracted significant research interest recently due to their enhanced physicochemical properties.Reasonable interface modulation can optimize intermediate active species’adsorption energy,improve catalytic active sites’selectivity,and enhance intrinsic catalytic activity.Here,we provided an overview of the latest advancement in interface engineering for efficient HER catalysts.We begin with a brief introduction to the fundamental concepts and mechanisms of alkaline HER.Then,we analyze and discuss current regulating principles in interface engineering for HER catalysts,focusing particularly on optimizing electron structures and modulating microenvironment reactions.Finally,the challenges and further prospects of interface catalysts for future applications are discussed.展开更多
Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer...Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.展开更多
The development of high efficiency and stable electrocatalysts for oxygen evolution is critical for energy storage and conversion systems. Herein, a series of Co/Fe bimetal-organic frameworks (MOFs) were fabricated us...The development of high efficiency and stable electrocatalysts for oxygen evolution is critical for energy storage and conversion systems. Herein, a series of Co/Fe bimetal-organic frameworks (MOFs) were fabricated using a facile ultrasonic method at room temperature, as electrocatalysts for the oxygen evolution reaction (OER) in alkaline solution. The Co2Fe-MOF exhibited an overpotential of 280 mV at a current density of 10 mA cm^-2, a low Tafel slope of 44.7 mV dec^-1, and long-term stability over 12000 s in 1 mol L^-1 KOH. This impressive performance was attributed to the high charge transfer rate, large specific surface area, and synergistic effects of the cobalt and iron centers.展开更多
The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/...The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.展开更多
As the kinetically sluggish oxygen evolution reaction(OER)is considered to be a bottleneck in overall water splitting,it is necessary to develop a highly active and stable electrocatalyst to overcome this issue.Herein...As the kinetically sluggish oxygen evolution reaction(OER)is considered to be a bottleneck in overall water splitting,it is necessary to develop a highly active and stable electrocatalyst to overcome this issue.Herein,we successfully fabricated a three-dimensional iron-dysprosium oxide co-regulated in-situ formed MOF-Ni arrays on carbon cloth(FeDy@MOF-Ni/CC)through a facile two-step hydrothermal method.Electrochemical studies demonstrate that the designed FeDy@MOF-Ni/CC catalyst requires an overpotential of only 251 mV to reach 10 mA cm-2 with a small Tafel slope of 52.1 mV dec-1.Additionally,the stability declined by only 5.5%after 80 h of continuous testing in 1.0 M KOH.Furthermore,a cell voltage of only 1.57 V in the overall water splitting system is sufficient to achieve 10 mA cm-2;this value is far better than that of most previously reported catalysts.The excellent catalytic performance originates from the unique 3D rhombus-like structure,as well as coupling synergies of Fe-Dy-Ni species.The combination of lanthanide and transition metal species in the synthesis strategy may open entirely new possibilities with promising potential in the design of highly active OER electrocatalysts.展开更多
基金supported by the National Natural Science Foundation of China(21376114,21476101)Major Program of Petroleum Refining of Catalyst of PetroChina Company Limited(10-01A-01-01-01)~~
文摘Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To reduce energy consumption and improve energy utilization efficiency,highly active electrocatalytic electrodes are essential for lowering the energy barrier of the HER.Catalysts featuring multiple interfaces have attracted significant research interest recently due to their enhanced physicochemical properties.Reasonable interface modulation can optimize intermediate active species’adsorption energy,improve catalytic active sites’selectivity,and enhance intrinsic catalytic activity.Here,we provided an overview of the latest advancement in interface engineering for efficient HER catalysts.We begin with a brief introduction to the fundamental concepts and mechanisms of alkaline HER.Then,we analyze and discuss current regulating principles in interface engineering for HER catalysts,focusing particularly on optimizing electron structures and modulating microenvironment reactions.Finally,the challenges and further prospects of interface catalysts for future applications are discussed.
基金supported by the National Key Research and Development Program of China(2021YFA1500500,2019-YFA0405600)the CAS Project for Young Scientists in Basic Research(YSBR-051)+6 种基金the National Science Fund for Distinguished Young Scholars(21925204)the National Natural Science Foundation of China(22202192,U19A2015,22221003,22250007,22163002)the Collaborative Innovation Program of Hefei Science Center,CAS(2022HSCCIP004)the International Partnership,the DNL Cooperation Fund,CAS(DNL202003)the USTC Research Funds of the Double First-Class Initiative(YD9990002016,YD999000-2014)the Program of Chinese Academy of Sciences(123GJHZ2022101GC)the Fundamental Research Funds for the Central Universities(WK9990000095,WK999000-0124).
文摘Electrocatalytic water splitting provides an efficient method for the production of hydrogen.In electrocatalytic water splitting,the oxygen evolution reaction(OER)involves a kinetically sluggish four-electron transfer process,which limits the efficiency of electrocatalytic water splitting.Therefore,it is urgent to develop highly active OER catalysts to accelerate reaction kinetics.Coupling single atoms and clusters in one system is an innovative approach for developing efficient catalysts that can synergistically optimize the adsorption and configuration of intermediates and improve catalytic activity.However,research in this area is still scarce.Herein,we constructed a heterogeneous single-atom cluster system by anchoring Ir single atoms and Co clusters on the surface of Ni(OH)_(2)nanosheets.Ir single atoms and Co clusters synergistically improved the catalytic activity toward the OER.Specifically,Co_(n)Ir_(1)/Ni(OH)_(2)required an overpotential of 255 mV at a current density of 10 mA·cm^(−2),which was 60 mV and 67 mV lower than those of Co_(n)/Ni(OH)_(2)and Ir1/Ni(OH)_(2),respectively.The turnover frequency of Co_(n)Ir_(1)/Ni(OH)_(2)was 0.49 s^(−1),which was 4.9 times greater than that of Co_(n)/Ni(OH)_(2)at an overpotential of 300 mV.
基金supported by the National Natural Science Foundation of China(21872016)the Fundamental Research Funds for the Central Universities(DUT17ZD204)~~
文摘The development of high efficiency and stable electrocatalysts for oxygen evolution is critical for energy storage and conversion systems. Herein, a series of Co/Fe bimetal-organic frameworks (MOFs) were fabricated using a facile ultrasonic method at room temperature, as electrocatalysts for the oxygen evolution reaction (OER) in alkaline solution. The Co2Fe-MOF exhibited an overpotential of 280 mV at a current density of 10 mA cm^-2, a low Tafel slope of 44.7 mV dec^-1, and long-term stability over 12000 s in 1 mol L^-1 KOH. This impressive performance was attributed to the high charge transfer rate, large specific surface area, and synergistic effects of the cobalt and iron centers.
文摘The most energy-inefficient step in the oxygen evolution reaction(OER), which involves a complicated four-electron transfer process, limits the efficiency of the electrochemical water splitting. Here, well-defined Ni/Co3O4 nanoparticles coupled with N-doped carbon hybrids(Ni/Co3O4@NC) were synthesized via a facile impregnation-calcination method as efficient electrocatalysts for OER in alkaline media. Notably, the impregnation of the polymer with Ni and Co ions in the first step ensured the homogeneous distribution of metals, thus guaranteeing the subsequent in situ calcination reaction, which produced well-dispersed Ni and Co3O4 nanoparticles. Moreover, the N-doped carbon matrix formed at high temperatures could effectively prevent the aggregation and coalescence, and regulate the electronic configuration of active species. Benefiting from the synergistic effect between the Ni, Co3O4, and NC species, the obtained Ni/Co3O4@NC hybrids exhibited enhanced OER activities and remarkable stability in an alkaline solution with a smaller overpotential of 350 m V to afford 10 m A cm-2, lower Tafel slope of 52.27 m V dec-1, smaller charge-transfer resistance, and higher double-layer capacitance of 25.53 m F cm-2 compared to those of unary Co3O4@NC or Ni@NC metal hybrids. Therefore, this paper presents a facile strategy for designing other heteroatom-doped oxides coupled with ideal carbon materials as electrocatalysts for the OER.
文摘As the kinetically sluggish oxygen evolution reaction(OER)is considered to be a bottleneck in overall water splitting,it is necessary to develop a highly active and stable electrocatalyst to overcome this issue.Herein,we successfully fabricated a three-dimensional iron-dysprosium oxide co-regulated in-situ formed MOF-Ni arrays on carbon cloth(FeDy@MOF-Ni/CC)through a facile two-step hydrothermal method.Electrochemical studies demonstrate that the designed FeDy@MOF-Ni/CC catalyst requires an overpotential of only 251 mV to reach 10 mA cm-2 with a small Tafel slope of 52.1 mV dec-1.Additionally,the stability declined by only 5.5%after 80 h of continuous testing in 1.0 M KOH.Furthermore,a cell voltage of only 1.57 V in the overall water splitting system is sufficient to achieve 10 mA cm-2;this value is far better than that of most previously reported catalysts.The excellent catalytic performance originates from the unique 3D rhombus-like structure,as well as coupling synergies of Fe-Dy-Ni species.The combination of lanthanide and transition metal species in the synthesis strategy may open entirely new possibilities with promising potential in the design of highly active OER electrocatalysts.