The phenomenon of anti-symmetrical bifurcation of periodic solutionsoccurring near an integral manifold is the intrinsic cause resulting in harmonic resonanceover-voltage in power systems. Due to this discovery, the p...The phenomenon of anti-symmetrical bifurcation of periodic solutionsoccurring near an integral manifold is the intrinsic cause resulting in harmonic resonanceover-voltage in power systems. Due to this discovery, the principle of eliminating resonance byusing anti-bifurcation technique is presented, which makes that the theoretical bases of verymeasure to eliminate resonance are unified firstly from a point of view of basic theory. Ourdiscussion models depend on a class of nonlinear control model. Using the direct Lyapunov method, acomplete theoretical proof is given in accordance with the measure of eliminating resonance byconnecting nonlinear resistor in series to the neutral point of P. T., and the feedback control lawbeing applied. It comprises the action of parameters of resistor to eliminate resonance and theactual process of eliminating resonance, i.e., to go against bifurcation process which forces thebig harmonic solutions to retreat to the integral manifold gradually and disappear eventually, whichby using the nonlinear controllers. This makes it sure that the intrinsic cause of resonance iseliminated thoroughly. The obtained theory results and computing results are better than thepresented results.展开更多
A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the se...A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.展开更多
The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to ...The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.展开更多
Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is ...Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.展开更多
In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground e...In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground excitation. The contained liquid is assumed incompressible, inviscid and has irrotational motion. To estimate the seismic response, the method of superposition of modes has been applied. To analyze the rigid tank response, Laplace's equation is considered as the governing equation of the fluid domain, in both time and frequency domains. The boundary element method (BEM) is employed to evaluate the natural modes of liquid in a cylindrical tank. To gain this goal, the fluid domain is divided into two upper and lower parts partitioned by the baffle. Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid have been considered.展开更多
A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit v...A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit value, relieves operational conditions of lines and cables, besides, it improves feeder's voltage behavior. Due to load variation along the day, the dynamic compensation of power factor allows maintaining this parameter close to the ideal. This paper brings a study about a reactive dynamic compensator based on the voltage control in a capacitive element, varying the reactive energy in accordance with the system demand, everything from the energy efficiency point of view. In distribution systems, the losses due to this variable compensation can be lower than in other compensation methods and also the voltage presents a better behavior, justifying its application.展开更多
文摘The phenomenon of anti-symmetrical bifurcation of periodic solutionsoccurring near an integral manifold is the intrinsic cause resulting in harmonic resonanceover-voltage in power systems. Due to this discovery, the principle of eliminating resonance byusing anti-bifurcation technique is presented, which makes that the theoretical bases of verymeasure to eliminate resonance are unified firstly from a point of view of basic theory. Ourdiscussion models depend on a class of nonlinear control model. Using the direct Lyapunov method, acomplete theoretical proof is given in accordance with the measure of eliminating resonance byconnecting nonlinear resistor in series to the neutral point of P. T., and the feedback control lawbeing applied. It comprises the action of parameters of resistor to eliminate resonance and theactual process of eliminating resonance, i.e., to go against bifurcation process which forces thebig harmonic solutions to retreat to the integral manifold gradually and disappear eventually, whichby using the nonlinear controllers. This makes it sure that the intrinsic cause of resonance iseliminated thoroughly. The obtained theory results and computing results are better than thepresented results.
文摘A pressurizer is one of important equipment in a pressurized water reactor plant. It is used to maintain the pressure of primary coolant within allowed range because the sharp change of coolant pressure affects the security of reactor, therefor, the study of pressurizer’s pressure control methods is very important. In this paper, an adaptive fuzzy controller is presented for pressure control of a presurizer in a nuclear power plant. The controller can on-line tune fuzzy control rules and parameters by self-learning in the actual control process, which possesses the way of thinking like human to make a decision. The simulation results for a pressurized water reactor plant show that the adaptive fuzzy controller has optimum and intelligent characteristics, which prove the controller is effective.
基金the US National Science Foundation (CBET-1603851 and CHE-1710102) for support of this workthe National Science Center of Poland (DEC-2013/09/B/ST4/03711) for support
文摘The application of high pressure favors many chemical processes, providing higher yields or improved rates in chemical reactions and improved solvent power in separation processes, and allowing activation barriers to be overcome through the increase in molecular energy and molecular collision rates. High pressures-up to millions of bars using diamond anvil cells-can be achieved in the laboratory, and lead to many new routes for chemical synthesis and the synthesis of new materials with desirable thermody- namic, transport, and electronic properties. On the industrial scale, however, high-pressure processing is currently limited by the cost of compression and by materials limitations, so that few industrial processes are carried out at pressures above 25 MPa. An alternative approach to high-pressure processing is pro- posed here, in which very high local pressures are generated using the surface-driven interactions from a solid substrate. Recent experiments and molecular simulations show that such interactions can lead to local pressures as high as tens of thousands of bars (1 bar=1×10^5 Pa), and even millions of bars in some cases. Since the active high-pressure processing zone is inhomogeneous, the pressure is different in dif- ferent directions. In many cases, it is the pressure in the direction parallel to the surface of the substrate (the tangential pressure) that is most greatly enhanced. This pressure is exerted on the molecules to be processed, but not on the solid substrate or the containing vessel. Current knowledge of such pressure enhancement is reviewed, and the possibility of an alternative route to high-pressure processing based on surface-driven forces is discussed. Such surface-driven high-pressure processing would have the advantage of achieving much higher pressures than are possible with traditional bulk-phase processing, since it eliminates the need for mechanical compression. Moreover, no increased pressure is exerted on the containing vessel for the process, thus eliminating concerns about materials failure.
基金Project(51375029)supported by the National Natural Science Foundation of ChinaProject(20091102120038)supported by Specialized Research Fund for Doctoral Program of Higher Education of China
文摘Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.
文摘In thispaper, the effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are evaluated. A baffle is an annular plate which supplies a kind of passive control on the effects of ground excitation. The contained liquid is assumed incompressible, inviscid and has irrotational motion. To estimate the seismic response, the method of superposition of modes has been applied. To analyze the rigid tank response, Laplace's equation is considered as the governing equation of the fluid domain, in both time and frequency domains. The boundary element method (BEM) is employed to evaluate the natural modes of liquid in a cylindrical tank. To gain this goal, the fluid domain is divided into two upper and lower parts partitioned by the baffle. Linearized kinematic and dynamic boundary conditions of the free surface of the contained liquid have been considered.
文摘A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit value, relieves operational conditions of lines and cables, besides, it improves feeder's voltage behavior. Due to load variation along the day, the dynamic compensation of power factor allows maintaining this parameter close to the ideal. This paper brings a study about a reactive dynamic compensator based on the voltage control in a capacitive element, varying the reactive energy in accordance with the system demand, everything from the energy efficiency point of view. In distribution systems, the losses due to this variable compensation can be lower than in other compensation methods and also the voltage presents a better behavior, justifying its application.