期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
金属离子对青霉素菌渣厌氧发酵产气模型分析 被引量:1
1
作者 方楠 赵燕肖 +4 位作者 习彦花 刘敬 梁文华 程辉彩 张丽萍 《中国环境科学》 EI CAS CSCD 北大核心 2020年第7期3020-3028,共9页
为比较响应面法与反向传播神经网络法在厌氧发酵过程中的应用效果,以青霉素菌渣为原料,通过单因素和Box-Behnken法设计试验,在发酵体系中添加不同量的Fe^2+、Co^2+、Ni^2+,以确定其对青霉素菌渣厌氧产气性能的影响.结果表明,Fe^2+、Co^2... 为比较响应面法与反向传播神经网络法在厌氧发酵过程中的应用效果,以青霉素菌渣为原料,通过单因素和Box-Behnken法设计试验,在发酵体系中添加不同量的Fe^2+、Co^2+、Ni^2+,以确定其对青霉素菌渣厌氧产气性能的影响.结果表明,Fe^2+、Co^2+、Ni^2+单一最佳添加量为:500mg/L、30mg/L、0.3mg/L,产沼气量较对照分别提高了:102.18%、45.48%、60.12%.其促进作用随添加浓度增大呈现:弱-强-弱趋势.使用响应面法及反向传播神经网络法对金属离子添加量进行建模优化,并使用批式厌氧发酵进行验证.响应面法建模预测Fe^2+、Co^2+、Ni^2+最佳混合添加浓度为:440.94mg/L、16.22mg/L、0.39mg/L,预测累积产沼气量为1314.49mL,R^2=0.972,试验与验证相对误差为4.65%;反向传播神经网络法建模Fe^2+、Co^2+、Ni^2+最佳混合添加浓度为495mg/L、21mg/L、0.5mg/L,预测产沼气量为1551.55mL,R^2=0.991,试验与验证相对误差为0.47%.反向传播神经网络法建模具有更好的拟合效果且与验证试验误差小,是一种更有效的仿真方法.说明该方法在优化厌氧发酵金属离子添加具有应用潜力,同时也为厌氧发酵条件优化提供新思路. 展开更多
关键词 青霉素菌渣 厌氧发酵 金属离子优化 响应面 反向传播神经网络法
下载PDF
Approximation Property of the Modified Elman Network 被引量:5
2
作者 任雪梅 陈杰 +1 位作者 龚至豪 窦丽华 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期19-23,共5页
A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three la... A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three layers including the input layer, the hidden layer and the output layer. The input layer is composed of two different groups of neurons, the group of external input neurons and the group of the internal context neurons. Since arbitrary connections can be allowed from the hidden layer to the context layer, the modified Elman network has more memory space to represent dynamic systems than the Elman network. In addition, it is proved that the proposed network with appropriate neurons in the context layer can approximate the trajectory of a given dynamical system for any fixed finite length of time. The dynamic backpropagation algorithm is used to estimate the weights of both the feedforward and feedback connections. The methods have been successfully applied to the modelling of nonlinear plants. 展开更多
关键词 nonlinear systems Elman network dynamic backpropagation algorithm MODELLING
下载PDF
LEARNING ALGORITHM OF STAGE CONTROL NBP NETWORK 被引量:1
3
作者 Yan Lixiang Qin Zheng (Xi’an JiaoTong University, Xi’an 710049) 《Journal of Electronics(China)》 2003年第6期467-471,共5页
This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending En... This letter analyzes the reasons why the known Neural Back Promulgation (NBP)network learning algorithm has slower speed and greater sample error. Based on the analysis and experiment, the training group descending Enhanced Combination Algorithm (ECA) is proposed.The analysis of the generalized property and sample error shows that the ECA can heighten the study speed and reduce individual error. 展开更多
关键词 Neural Back Promulgation(NBP) network Training group descending Enhanced Combination Algorithm (ECA)
下载PDF
Classification and Identification of Nuclear, Biological or Chemical Agents Taken from Remote Sensing Image by Using Neural Network
4
作者 Said El Yamani Samir Zeriouh Mustapha Boutahri Ahmed Roukhe 《Journal of Physical Science and Application》 2014年第3期177-182,共6页
In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural n... In the context of new risks and threats associated to nuclear, biological and chemical (NBC) attacks, and given the shortcomings of certain analytical methods such as principal component analysis (PCA), a neural network approach seems to be more accurate. PCA consists in projecting the spectrum of a gas collected from a remote sensing system in, firstly, a three-dimensional space, then in a two-dimensional one using a model of Multi-Layer Perceptron based neural network. It adopts during the learning process, the back propagation algorithm of the gradient, in which the mean square error output is continuously calculated and compared to the input until it reaches a minimal threshold value. This aims to correct the synaptic weights of the network. So, the Artificial Neural Network (ANN) tends to be more efficient in the classification process. This paper emphasizes the contribution of the ANN method in the spectral data processing, classification and identification and in addition, its fast convergence during the back propagation of the gradient. 展开更多
关键词 Artificial neural networks classification identification principal component analysis multi-layer perceptron back propagation of the gradient.
下载PDF
CRGT循环燃气轮机性能仿真 被引量:6
5
作者 郑洪涛 张玉龙 杨仁 《航空动力学报》 EI CAS CSCD 北大核心 2012年第1期118-123,共6页
采用VC和MATLAB混合编程方法,进行了不同循环燃气轮机的变工况性能分析.其中,采用修正工程算法编制了工质热力性质计算程序,采用反向传播(BP)神经网络法建立了压气机和涡轮部件特性计算模型,采用模块化建模方法建立了简单循环、蒸汽回注... 采用VC和MATLAB混合编程方法,进行了不同循环燃气轮机的变工况性能分析.其中,采用修正工程算法编制了工质热力性质计算程序,采用反向传播(BP)神经网络法建立了压气机和涡轮部件特性计算模型,采用模块化建模方法建立了简单循环、蒸汽回注(STIG)循环和化学回热(CRGT)循环性能仿真模型.仿真结果表明:在保持燃机几何结构和设计功率不变的条件下,STIG循环和CRGT循环均能降低燃气初温和提高循环热效率.其中,简单循环的热效率为35.16%,STIG循环的热效率可达到45%,CRGT循环的热效率可达到52.8%;为了进一步提高该型燃机的应用潜力和使用范围,可以将该型CRGT循环燃气轮机用于海水淡化应用中. 展开更多
关键词 关键词:化学回热(CRGT)循环 混合编程 反向传播(BP)神经网络 模块化建模 性能仿真
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部