Forward osmosis(FO), as one of the emerging desalination technologies, has the potential to produce fresh water from a variety of water sources by utilizing the osmotic pressure gradient across a semi-permeable membra...Forward osmosis(FO), as one of the emerging desalination technologies, has the potential to produce fresh water from a variety of water sources by utilizing the osmotic pressure gradient across a semi-permeable membrane.Draw solution, as an essential component of any FO process, can extract water molecules from seawater or wastewater. An ideal draw solution should meet three essential requirements, namely high osmotic pressure, low reverse flux, and facile regeneration mechanism. The selection of proper draw solutes is especially critical for an energy-efficient FO process since the energy consumption mostly arises from the separation or regeneration of the draw solution. Recently, we developed a few multi-functional FO draw solutes, mainly aiming to enhance the FO water flux and to explore facile re-concentration methods. This review summarizes these draw solutes,including Na^+_- functionalized carbon quantum dots, thermoresponsive copolymers, hydrophilic magnetic nanoparticles, and thermoresponsive magnetic nanoparticles.展开更多
Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and r...Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the development and application of virus-induced gene silencing in plant functional genomics.展开更多
基金Supported by the National Research Foundation-Prime Minister's office,Republic of Singapore(Grant#R-279-000-337-281)
文摘Forward osmosis(FO), as one of the emerging desalination technologies, has the potential to produce fresh water from a variety of water sources by utilizing the osmotic pressure gradient across a semi-permeable membrane.Draw solution, as an essential component of any FO process, can extract water molecules from seawater or wastewater. An ideal draw solution should meet three essential requirements, namely high osmotic pressure, low reverse flux, and facile regeneration mechanism. The selection of proper draw solutes is especially critical for an energy-efficient FO process since the energy consumption mostly arises from the separation or regeneration of the draw solution. Recently, we developed a few multi-functional FO draw solutes, mainly aiming to enhance the FO water flux and to explore facile re-concentration methods. This review summarizes these draw solutes,including Na^+_- functionalized carbon quantum dots, thermoresponsive copolymers, hydrophilic magnetic nanoparticles, and thermoresponsive magnetic nanoparticles.
基金supported by the National Transgenic Research Projects of China (Grant No. 2009ZX08009-026B)
文摘Virus-induced gene silencing is regarded as a powerful and efficient tool for the analysis of gene function in plants because it is simple, rapid and transformation-free. It has been used to perform both forward and reverse genetics to identify plant functional genes. Many viruses have been developed into virus-induced gene silencing vectors and gene functions involved in development, biotic and abiotic stresses, metabolism, and cellular signaling have been reported. In this review, we discuss the development and application of virus-induced gene silencing in plant functional genomics.