An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures r...An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0MPa with nitrogen and water flowing countercurrently through the packing. The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaCl in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type modei. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.展开更多
The discrepancy between pseudo-homogeneous one-dimensional model and pseudo-homogeneous two-dimensional model is studied. It is found that there are great differences between two models. This paper compares the maximu...The discrepancy between pseudo-homogeneous one-dimensional model and pseudo-homogeneous two-dimensional model is studied. It is found that there are great differences between two models. This paper compares the maximum and minimum values of the radial temperature in the hot spot in case that a single exothermic reaction is carried out, a correlation is obtained with pseudo-homogeneous one-dimensional model to describe the entire reactor behavior. A new runaway criterion, based on the occurrence of inflection in the hot spot locus, is developed for the case of pseudo-homogeneous two-dimensional model. This criterion predicts the maximum allowable temperature for safe operation and the regions of runaway, respectively. The calculated results show that, compared with the results based on pseudo-homogeneous one-dimensional model, runaway will easily occur when the radial temperature gradient has to be considered.展开更多
基金National Natural Science Foundation of China(No. 20136010)
文摘An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0MPa with nitrogen and water flowing countercurrently through the packing. The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaCl in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type modei. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.
基金Supported by the Tianjin Natural Science Foundation.
文摘The discrepancy between pseudo-homogeneous one-dimensional model and pseudo-homogeneous two-dimensional model is studied. It is found that there are great differences between two models. This paper compares the maximum and minimum values of the radial temperature in the hot spot in case that a single exothermic reaction is carried out, a correlation is obtained with pseudo-homogeneous one-dimensional model to describe the entire reactor behavior. A new runaway criterion, based on the occurrence of inflection in the hot spot locus, is developed for the case of pseudo-homogeneous two-dimensional model. This criterion predicts the maximum allowable temperature for safe operation and the regions of runaway, respectively. The calculated results show that, compared with the results based on pseudo-homogeneous one-dimensional model, runaway will easily occur when the radial temperature gradient has to be considered.