Axial liquid dispersion was experimentally studied in liquid-solid and gas-liquid-solid magnetically stabilized beds using the ferromagnetic catalyst of SRNA-4 as the solid phase. The effects of operating factors and ...Axial liquid dispersion was experimentally studied in liquid-solid and gas-liquid-solid magnetically stabilized beds using the ferromagnetic catalyst of SRNA-4 as the solid phase. The effects of operating factors and fluid characters, such as superficial liquid velocity, superficial gas velocity, magnetic field intensity, liquid viscosity and surface tension, on axial dispersion coefficients of liquid were investigated. The dispersion coefficients increased with the increase of superficial liquid velocity and superficial gas velocity, and decreased with the increase of liquid viscosity, liquid surface tension and magnetic field intensity. A correlation equation of Peclet number was obtained for both liquid-solid and gas-liquid-solid magnetically stabilized bed.展开更多
Liquid phase axial mixing was measured with the tracer technique in a packed column with inner diameter of 0.15m, in which the structured packing, Mellapak 350Y, was installed. Tap water as the liquid phase flowed dow...Liquid phase axial mixing was measured with the tracer technique in a packed column with inner diameter of 0.15m, in which the structured packing, Mellapak 350Y, was installed. Tap water as the liquid phase flowed down through the column and stagnant gas was at elevated pressure ranging from atmospheric to 2.0MPa. The model parameters of Bo and 9 were estimated with the least square method in the time domain. As liquid flow rate was increased, the liquid axial mixing decreased. Under our experimental conditions, the effect of pressure on Bo number on single liquid phase was negligible, and eddy diffusion was believed to be the primary cause of axial mixing in liquid phase.展开更多
An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures r...An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0MPa with nitrogen and water flowing countercurrently through the packing. The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaCl in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type modei. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.展开更多
The local flow characteristics in an external-loop airlift slurry reactor were investigated.The axial profiles of the local gas holdup,the Sauter mean diameter and the rise velocity were obtained.It was found that the...The local flow characteristics in an external-loop airlift slurry reactor were investigated.The axial profiles of the local gas holdup,the Sauter mean diameter and the rise velocity were obtained.It was found that the bubble size and rise velocity were influenced by the solid holdup,and the bubble coalescence was enhanced by the increase of the solid holdup.A new correlation was used to predict the slip velocity between the gas phase and the slurry phase by taking into account the local gas holdup,the bubble size,and the physical properties of the experimental system.By using this correlation,the local drag coefficient can be calculated in the bubble swarm.展开更多
The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyc...The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.展开更多
Based on the reaction microscope at the institute of modern physics, the reaction mechanism in molecular ion-atom collisions is investigated experimentally. The features of this system is illustrated by a kinematicall...Based on the reaction microscope at the institute of modern physics, the reaction mechanism in molecular ion-atom collisions is investigated experimentally. The features of this system is illustrated by a kinematically complete experhnent performed for the collision process. Using the so-called list-mode data recording technique and the coincidence measurement, the momentum vector of each fragment from the molecular ion were recorded event by event. The orientation of the molecular axis for H2^+ dissociation reactions could be determined for each event in the off-line analysis. The measured orientation of the molecular ion is believed the same as the one at the instance of collision under axial recoil approximation. The polar angle resolution of the molecular orientation of ±8° was obtained.展开更多
Instanton configurations of (1+1)-dimensions in an antiferromagnetic biaxial-anisotropy-spin-chain are obtained explicitly in the strong anisotropy limit, which interpolate between degenerate equilibrium orientatio...Instanton configurations of (1+1)-dimensions in an antiferromagnetic biaxial-anisotropy-spin-chain are obtained explicitly in the strong anisotropy limit, which interpolate between degenerate equilibrium orientations of the Neel vector along easy axis and are seen to be responsible for quantum tunneling. Macroscopic quantum coherence of the domain walls is demonstrated in terms of the instantons.展开更多
In partially premixed combustion of gas turbine, the combustion temperature should be lowed in order to reduce NOx. One solution is lean premixed combustion. However, the problem is that large excess air ratio may mak...In partially premixed combustion of gas turbine, the combustion temperature should be lowed in order to reduce NOx. One solution is lean premixed combustion. However, the problem is that large excess air ratio may make the combustion unstable. A novel combustor with circumferential reverse flow of fuel gas is proposed for settling this problem. A 10 kw furnace is established to test performance of this combustor. Three factors such as primary air ratio, position of secondary air, total excess air ratio are studied. The emission characteristics and axial flame temperature distribution are studied. Basing on experimental results, the axial flame temperature and NOr emission increase with primary air ratio and axial length of second stream, and decrease with total excess air ratio. When the total excess air ratio is larger than 1.05, the combustor presents a lower temperature field and much lower NOx emission (less than 10 ppm).展开更多
An optic-fiber liquid-level sensor based on tapered chirped grating was proposed and demonstrated experimentally.With a properly designed column buoy hung to chain wheel,the liquid-level variation was converted to axi...An optic-fiber liquid-level sensor based on tapered chirped grating was proposed and demonstrated experimentally.With a properly designed column buoy hung to chain wheel,the liquid-level variation was converted to axial strain,which made the reflection spectrum of the tapered chirped grating narrowed or broadened correspondingly.And a high-sensitive liquid-level sensor was obtained by monitoring the bandwidth variation of the tapered chirped grating.Compared with traditional absolute wavelength or power detection,this special monitoring technique based on bandwidth modulation makes the liquid-level sensor insensitive to spatially uniform temperature variations and power fluctuations from down-lead or light source.展开更多
基金Supported by the National Natural Science Foundation of China (No.20206023) and SIN0PEC (No.X504029).
文摘Axial liquid dispersion was experimentally studied in liquid-solid and gas-liquid-solid magnetically stabilized beds using the ferromagnetic catalyst of SRNA-4 as the solid phase. The effects of operating factors and fluid characters, such as superficial liquid velocity, superficial gas velocity, magnetic field intensity, liquid viscosity and surface tension, on axial dispersion coefficients of liquid were investigated. The dispersion coefficients increased with the increase of superficial liquid velocity and superficial gas velocity, and decreased with the increase of liquid viscosity, liquid surface tension and magnetic field intensity. A correlation equation of Peclet number was obtained for both liquid-solid and gas-liquid-solid magnetically stabilized bed.
基金Supported by the National Natural Science Foundation of China (No. 20136010).
文摘Liquid phase axial mixing was measured with the tracer technique in a packed column with inner diameter of 0.15m, in which the structured packing, Mellapak 350Y, was installed. Tap water as the liquid phase flowed down through the column and stagnant gas was at elevated pressure ranging from atmospheric to 2.0MPa. The model parameters of Bo and 9 were estimated with the least square method in the time domain. As liquid flow rate was increased, the liquid axial mixing decreased. Under our experimental conditions, the effect of pressure on Bo number on single liquid phase was negligible, and eddy diffusion was believed to be the primary cause of axial mixing in liquid phase.
基金National Natural Science Foundation of China(No. 20136010)
文摘An experimental study of the extent of axial backmixing in both gas and liquid phases was conducted in a 150 mm ID column packed with Mellapak 250Y corrugated structured packing. The column was operated at pressures ranging from 0.3 MPa to 2.0MPa with nitrogen and water flowing countercurrently through the packing. The amount of axial backmixing was experimentally evaluated by the pulse response techniques using hydrogen in gas phase and an aqueous solution of NaCl in liquid phase as inert tracers. The response of the tracer was monitored by means of thermal conductivity in the gas phase and electrical conductance in the liquid phase. The experimentally determined residence time distribution (RTD) curves were interpreted in terms of the diffusion-type modei. The results indicated that the axial backmixing in the gas increased notably with gas flowrate and slightly with operating pressure and liquid flowrate. The liquid-phase axial backmixing was an increasing function of both gas and liquid flowrates and insensitive to pressure. Various correlations were developed for reproducing the experimental mixing data. The agreement between experimental and correlated data appeared to be acceptable and within ±20% of difference.
文摘The local flow characteristics in an external-loop airlift slurry reactor were investigated.The axial profiles of the local gas holdup,the Sauter mean diameter and the rise velocity were obtained.It was found that the bubble size and rise velocity were influenced by the solid holdup,and the bubble coalescence was enhanced by the increase of the solid holdup.A new correlation was used to predict the slip velocity between the gas phase and the slurry phase by taking into account the local gas holdup,the bubble size,and the physical properties of the experimental system.By using this correlation,the local drag coefficient can be calculated in the bubble swarm.
基金Project(200801410005) supported by Doctoral Foundation of Ministry of Education of China
文摘The effects of fire exposure,reinforcement ratio and the presence of axial load under fire on the seismic behavior of reinforced concrete(RC) shear walls were investigated.Five RC shear walls were tested under low cyclic loading.Prior to the cyclic test,three specimens were exposed to fire and two of them were also subjected to a constant axial load.Test results indicate that the ultimate load of the specimen with lower reinforcement ratio is reduced by 15.8%after exposure to elevated temperatures.While the reductions in the energy dissipation and initial stiffness are 59.2%and 51.8%,respectively,which are much higher than those in the ultimate load.However,this deterioration can be slowed down by properly increasing reinforcement due to the strength and stiffness recovery of steel bars after cooling.In addition,the combined action of elevated temperatures and axial load results in more energy dissipation than the action of fire exposure alone.
基金V. ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10434100) and the Knowledge Innovation Project of Chinese Academy of Sciences.
文摘Based on the reaction microscope at the institute of modern physics, the reaction mechanism in molecular ion-atom collisions is investigated experimentally. The features of this system is illustrated by a kinematically complete experhnent performed for the collision process. Using the so-called list-mode data recording technique and the coincidence measurement, the momentum vector of each fragment from the molecular ion were recorded event by event. The orientation of the molecular axis for H2^+ dissociation reactions could be determined for each event in the off-line analysis. The measured orientation of the molecular ion is believed the same as the one at the instance of collision under axial recoil approximation. The polar angle resolution of the molecular orientation of ±8° was obtained.
基金Supported by the Natural Science Basic Research Plan in Henan Province of China under Grant No.2007140009
文摘Instanton configurations of (1+1)-dimensions in an antiferromagnetic biaxial-anisotropy-spin-chain are obtained explicitly in the strong anisotropy limit, which interpolate between degenerate equilibrium orientations of the Neel vector along easy axis and are seen to be responsible for quantum tunneling. Macroscopic quantum coherence of the domain walls is demonstrated in terms of the instantons.
文摘In partially premixed combustion of gas turbine, the combustion temperature should be lowed in order to reduce NOx. One solution is lean premixed combustion. However, the problem is that large excess air ratio may make the combustion unstable. A novel combustor with circumferential reverse flow of fuel gas is proposed for settling this problem. A 10 kw furnace is established to test performance of this combustor. Three factors such as primary air ratio, position of secondary air, total excess air ratio are studied. The emission characteristics and axial flame temperature distribution are studied. Basing on experimental results, the axial flame temperature and NOr emission increase with primary air ratio and axial length of second stream, and decrease with total excess air ratio. When the total excess air ratio is larger than 1.05, the combustor presents a lower temperature field and much lower NOx emission (less than 10 ppm).
基金supported by the National Natural Science Foundation of China (Grant No. 61007007)the Fundation of BeiJing Municipal Committee of CPC Organization Department (Grant No. 2012D005002-000001)
文摘An optic-fiber liquid-level sensor based on tapered chirped grating was proposed and demonstrated experimentally.With a properly designed column buoy hung to chain wheel,the liquid-level variation was converted to axial strain,which made the reflection spectrum of the tapered chirped grating narrowed or broadened correspondingly.And a high-sensitive liquid-level sensor was obtained by monitoring the bandwidth variation of the tapered chirped grating.Compared with traditional absolute wavelength or power detection,this special monitoring technique based on bandwidth modulation makes the liquid-level sensor insensitive to spatially uniform temperature variations and power fluctuations from down-lead or light source.