In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning has crucial effects on the long-term stable operation. In order to get a clear insight into the nature of this cleaning process...In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning has crucial effects on the long-term stable operation. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for industrial applications, the flow in ceramic candle filter was investigated. The flow in the pulse-jetspace and inside the ceramic candle is regarded as two- dimensional, unsteady, compressible flow, and numerical simulation is carried out by computational fluid dynamics. The numerical predictions of flow field are in good agreement with the experimental measurements. Effects of the candle diameter, the separation distance between the nozzle and the candle injector and the length of the candle on the flowfield have been numerically analyzed to provide the basis for the optimum design of the pulse cleaning system.展开更多
The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. T...The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.展开更多
基金Supported by the National Natural Science Foundation of China(No.59976023)
文摘In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning has crucial effects on the long-term stable operation. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for industrial applications, the flow in ceramic candle filter was investigated. The flow in the pulse-jetspace and inside the ceramic candle is regarded as two- dimensional, unsteady, compressible flow, and numerical simulation is carried out by computational fluid dynamics. The numerical predictions of flow field are in good agreement with the experimental measurements. Effects of the candle diameter, the separation distance between the nozzle and the candle injector and the length of the candle on the flowfield have been numerically analyzed to provide the basis for the optimum design of the pulse cleaning system.
基金Funded by the Natural Science Foundation of China (No. 50775081)the National High-tech R&D (863) Program No. 2006AA09Z238)the NCET-07-0330, State Education Ministry.
文摘The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.