Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be o...Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.展开更多
The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the ...The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the corresponding isomerization products are 1-buten-2-ol, 2-buten-2-ol, butanal or 1-buten-l-ol, methyl 1-propenyl ether, methyl allyl ether, and ethyl vinyl ether, respectively. Among them, there are three pathways through butylene oxide, indicating butylene oxide is an important intermediate product during butanone isomer ization. The calculated vertical ionization energies of the reactant and its products are in a good agreement with the experimental values available. From the consideration for the relative energies Of transition states and the number of high-energy barriers we infer that the reaction pathway butanone-*l-buten-2-ol---2-buten-2-oi is the most competitive. The obtained results are informative for future studies on isomerization of ketone molecules.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 40974073)the National 863 Program (Grant No.2007AA060504)the National 973 Program (Grant No. 2007CB209605) and CNPC Geophysical Laboratories
文摘Presently the research based on the accurate seismic imaging methods for surface relief, complex structure, and complicated velocity distributions is of great significance. Reverse-time migration is considered to be one of highly accurate methods. In this paper, we propose a new non-reflecting recursive algorithm for reverse-time migration by introducing the wave impedance function into the acoustic wave equation and the algorithm for the surface relief case is derived from the coordinate transformation principle. Using the exploding reflector principle and the zero-time imaging condition of poststack reverse- time migration, poststack numerical simulation and reverse-time migration with complex conditions can be realized. The results of synthetic and real data calculations show that the method effectively suppresses unwanted internal reflections and also deals with the seismic imaging problems resulting from surface relief. So, we prove that this method has strong adaptability and practicality.
文摘The potential energy surfaces for butanone isomerization have been investigated by density function theory calculation. Six main reaction pathways are confirmed using the intrinsic reaction coordinate method, and the corresponding isomerization products are 1-buten-2-ol, 2-buten-2-ol, butanal or 1-buten-l-ol, methyl 1-propenyl ether, methyl allyl ether, and ethyl vinyl ether, respectively. Among them, there are three pathways through butylene oxide, indicating butylene oxide is an important intermediate product during butanone isomer ization. The calculated vertical ionization energies of the reactant and its products are in a good agreement with the experimental values available. From the consideration for the relative energies Of transition states and the number of high-energy barriers we infer that the reaction pathway butanone-*l-buten-2-ol---2-buten-2-oi is the most competitive. The obtained results are informative for future studies on isomerization of ketone molecules.