This paper addresses the problem of detecting objectionable videos, which has never been carefully studied before. Our method can be efficiently used to filter objectionable videos on Internet. One tensor based key-fr...This paper addresses the problem of detecting objectionable videos, which has never been carefully studied before. Our method can be efficiently used to filter objectionable videos on Internet. One tensor based key-frame selection algorithm, one cube based color model and one objectionable video estimation algorithm are presented. The key frame selection is based on motion analysis using the three-dimensional structure tensor. Then the cube based color model is employed to detect skin color in each key frame. Finally, the video estimation algorithm is applied to estimate objectionable degree in videos. Experimental results on a variety of real-world videos downloaded from Internet show that this method is promising.展开更多
基金Supported by National Natural Science Foundation of P. R. China (60121302)the National High Technology Research and Development Program of P. R. China (2002AA142100)
文摘This paper addresses the problem of detecting objectionable videos, which has never been carefully studied before. Our method can be efficiently used to filter objectionable videos on Internet. One tensor based key-frame selection algorithm, one cube based color model and one objectionable video estimation algorithm are presented. The key frame selection is based on motion analysis using the three-dimensional structure tensor. Then the cube based color model is employed to detect skin color in each key frame. Finally, the video estimation algorithm is applied to estimate objectionable degree in videos. Experimental results on a variety of real-world videos downloaded from Internet show that this method is promising.