Analyses of the correlation between hyperspectral reflectance and pigment content including chlorophyll a, chlorophyll b and carotenoid of leaves in different sites of rice were reported in this paper. The hyperspe...Analyses of the correlation between hyperspectral reflectance and pigment content including chlorophyll a, chlorophyll b and carotenoid of leaves in different sites of rice were reported in this paper. The hyperspectral reflectance of late rice during the whole growing season was measured using a Spectroradiometer with spectral range of 350-1050 nm and resolution of 3 nm. The chlorophyll a, chlorophyll b and carotenoid contents in rice leaves in rice fields to which different levels of nitrogen were applied were measured. The chlorophyll a content of upper leaves was well correlated with the spectral variables. However, the correlation between both chlorophyll b and caroteniod and the spectral variables was far from that of chlorophyll a. The potential of hyperspectral reflectance measurement for estimating chlorophyll a of upper leaves was evaluated using univariate correlation and multivariate regression analysis methods with different types of predictors. This study showed that the most suitable estimated model of chlorophyll a of upper leaves was obtained by using some hyperspectral variables such as SD r, SD b and their integration.展开更多
To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),...To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).展开更多
文摘Analyses of the correlation between hyperspectral reflectance and pigment content including chlorophyll a, chlorophyll b and carotenoid of leaves in different sites of rice were reported in this paper. The hyperspectral reflectance of late rice during the whole growing season was measured using a Spectroradiometer with spectral range of 350-1050 nm and resolution of 3 nm. The chlorophyll a, chlorophyll b and carotenoid contents in rice leaves in rice fields to which different levels of nitrogen were applied were measured. The chlorophyll a content of upper leaves was well correlated with the spectral variables. However, the correlation between both chlorophyll b and caroteniod and the spectral variables was far from that of chlorophyll a. The potential of hyperspectral reflectance measurement for estimating chlorophyll a of upper leaves was evaluated using univariate correlation and multivariate regression analysis methods with different types of predictors. This study showed that the most suitable estimated model of chlorophyll a of upper leaves was obtained by using some hyperspectral variables such as SD r, SD b and their integration.
基金Project supported by the National Natural Science Foundation of China (No. 40271078)the Basic Research Program of Science and Technology Department of China (No. 2003DEA2C010-13)
文摘To further develop the methods to remotely sense the biochemical content of plant canopies,we report the results of an experiment to estimate the concentrations of three biochemical variables of corn,i.e.,nitrogen(N),crude fat(EE) and crude fiber(CF) concentrations,by spectral reflectance and the first derivative reflectance at fresh leaf scale. The correlations between spectral reflectance and the first derivative transformation and three biochemical variables were analyzed,and a set of estimation models were established using curve-fitting analyses. Coefficient of determination(R2),root mean square error(RMSE) and relative error of prediction(REP) of estimation models were calculated for the model quality evaluations,and the possible opti-mum estimation models of three biochemical variables were proposed,with R2 being 0.891,0.698 and 0.480 for the estimation models of N,EE and CF concentrations,respectively. The results also indicate that using the first derivative reflectance was better than using raw spectral reflectance for all three biochemical variables estimation,and that the first derivative reflectances at 759 nm,1954 nm and 2370 nm were most suitable to develop the estimation models of N,EE and CF concentrations,respectively. In addition,the high correlation coefficients of the theoretical and the measured biochemical parameters were obtained,especially for nitrogen(r=0.948).