Finding channel sandbodies is an important task in oil and gas exploration due to the importance of fluvial reservoirs. It is difficult to describe fluvial reservoirs in detail owing to their frequent changes and seri...Finding channel sandbodies is an important task in oil and gas exploration due to the importance of fluvial reservoirs. It is difficult to describe fluvial reservoirs in detail owing to their frequent changes and serious intersections, as well as limitations of S/N ratio and seismic data resolution. Based on the Laohekou 3D data in Shengli Oilfield, we analyze the general characteristics of fluvial reservoirs in this area, from which we find that they are characterized by strong amplitudes on seismic profiles, high continuity on time slices, and low frequency in the frequency domain. In addition, a cluster of strong string-bead- like reflections was found after color processing and detailed interpretation. To understand this observation, we conduct forward modeling to explain the mechanism. This provides a new way to identify ancient channels in similar areas. By using the multi-attribute fusion and RGB display techniques, channel incision is more obvious and the characteristics of the channel structures are manifested much better. Finally, we introduce and apply multi-wavelet detection technology to identify weaker fluvial reservoir signals.展开更多
What are the anomalous seismic reflection bodies at depths of over 6000m?Are they reefs or igneous rock?This is a difficult problem for seismic techniques,but the GMES technique can handle it .The GMES technique is ...What are the anomalous seismic reflection bodies at depths of over 6000m?Are they reefs or igneous rock?This is a difficult problem for seismic techniques,but the GMES technique can handle it .The GMES technique is a joint exploration technique combining gravity,magnetic,electrical,and seismic techniques.The specific procedure is to conduct a 2D interface-constrained CEMP inversion using 2D seismic and log data followed by a property parameter inversion of the anomalous bodics using gravity and seismic data by the stripping technique.We then estimate the physical properties ofthe anomalous bodies,such as density,susceptibility,resistivity,velocity,and etc.to deduce the geological features of the bodies and provide a basis for drilling decisions.The work in the TZ area reported in this paper shows the applicability of the technique.展开更多
Conventional AVO inversion utilizes the trace amplitudes of CMP gathers. There are three main factors affecting the accuracy of the inversion. First, CMP gathers are based on the hypothesis of horizontal layers but mo...Conventional AVO inversion utilizes the trace amplitudes of CMP gathers. There are three main factors affecting the accuracy of the inversion. First, CMP gathers are based on the hypothesis of horizontal layers but most real layers are not horizontal. Greater layer dip results in a greater difference between the observed CMP gathers and their real location. Second, conventional processing flows such as NMO, DMO, and deconvolution will distort amplitudes. Third, the formulation of reflection coefficient is related to incidence angles and it is difficult to get the relationship between amplitude and incidence angle. Wave equation prestack depth migration has the ability of imaging complex media and steeply dipping layers. It can reduce the errors of conventional processing and move amplitudes back to their real location. With true amplitude migration, common angle gathers abstraction, and AVO inversion, we suggest a method of AVO inversion from common shot gathers in order to reduce the effect of the above factors and improve the accuracy of AVO inversion.展开更多
A new one-dimensional(1 D) antiferromagnetic transition metal hybrid fluoride CoF2(H2O)2(pyz)(pyz =pyrazine) together with two new isostructural MF2(H2O)2(pyz)(M = Ni^2+, Zn^2+) have been successfully synthesized by t...A new one-dimensional(1 D) antiferromagnetic transition metal hybrid fluoride CoF2(H2O)2(pyz)(pyz =pyrazine) together with two new isostructural MF2(H2O)2(pyz)(M = Ni^2+, Zn^2+) have been successfully synthesized by the hydrothermal method. Their structures were determined by single crystal X-ray diffraction and they all crystallize in the same space group of C2/m. The magnetic property of CoF2(H2O)2(pyz) 1 was measured and discussed. The Weiss constant of-20.6 K indicates dominant antiferromagnetic interaction and the effective magnetic moment of about 5.66 μBsuggests large unquenched orbital contribution and anisotropy in 1. The quantum fluctuations in the quasi-1 D antiferromagnet of 1 prevent the appearance of long range magnetic order until 2.9 K, suggesting good 1 D magnetism.展开更多
基金sponsored by The Science and Technology Research Project,Shengli Oilfield (Grant No. YKW1002)
文摘Finding channel sandbodies is an important task in oil and gas exploration due to the importance of fluvial reservoirs. It is difficult to describe fluvial reservoirs in detail owing to their frequent changes and serious intersections, as well as limitations of S/N ratio and seismic data resolution. Based on the Laohekou 3D data in Shengli Oilfield, we analyze the general characteristics of fluvial reservoirs in this area, from which we find that they are characterized by strong amplitudes on seismic profiles, high continuity on time slices, and low frequency in the frequency domain. In addition, a cluster of strong string-bead- like reflections was found after color processing and detailed interpretation. To understand this observation, we conduct forward modeling to explain the mechanism. This provides a new way to identify ancient channels in similar areas. By using the multi-attribute fusion and RGB display techniques, channel incision is more obvious and the characteristics of the channel structures are manifested much better. Finally, we introduce and apply multi-wavelet detection technology to identify weaker fluvial reservoir signals.
文摘What are the anomalous seismic reflection bodies at depths of over 6000m?Are they reefs or igneous rock?This is a difficult problem for seismic techniques,but the GMES technique can handle it .The GMES technique is a joint exploration technique combining gravity,magnetic,electrical,and seismic techniques.The specific procedure is to conduct a 2D interface-constrained CEMP inversion using 2D seismic and log data followed by a property parameter inversion of the anomalous bodics using gravity and seismic data by the stripping technique.We then estimate the physical properties ofthe anomalous bodies,such as density,susceptibility,resistivity,velocity,and etc.to deduce the geological features of the bodies and provide a basis for drilling decisions.The work in the TZ area reported in this paper shows the applicability of the technique.
基金This project is sponsored by the "Pre-Cenozoic Marine Oil and Gas Resource Research around the Bohai Area" of the Knowledge Innovation Project of The Chinese Academy of Sciences (No. KZCX1-SW-18)
文摘Conventional AVO inversion utilizes the trace amplitudes of CMP gathers. There are three main factors affecting the accuracy of the inversion. First, CMP gathers are based on the hypothesis of horizontal layers but most real layers are not horizontal. Greater layer dip results in a greater difference between the observed CMP gathers and their real location. Second, conventional processing flows such as NMO, DMO, and deconvolution will distort amplitudes. Third, the formulation of reflection coefficient is related to incidence angles and it is difficult to get the relationship between amplitude and incidence angle. Wave equation prestack depth migration has the ability of imaging complex media and steeply dipping layers. It can reduce the errors of conventional processing and move amplitudes back to their real location. With true amplitude migration, common angle gathers abstraction, and AVO inversion, we suggest a method of AVO inversion from common shot gathers in order to reduce the effect of the above factors and improve the accuracy of AVO inversion.
基金supported by the National Natural Science Foundation of China (21901078)the Fundamental Research Funds for the Central Universities (2019kfy XKJC016)startup of Huazhong University of Science and Technology
文摘A new one-dimensional(1 D) antiferromagnetic transition metal hybrid fluoride CoF2(H2O)2(pyz)(pyz =pyrazine) together with two new isostructural MF2(H2O)2(pyz)(M = Ni^2+, Zn^2+) have been successfully synthesized by the hydrothermal method. Their structures were determined by single crystal X-ray diffraction and they all crystallize in the same space group of C2/m. The magnetic property of CoF2(H2O)2(pyz) 1 was measured and discussed. The Weiss constant of-20.6 K indicates dominant antiferromagnetic interaction and the effective magnetic moment of about 5.66 μBsuggests large unquenched orbital contribution and anisotropy in 1. The quantum fluctuations in the quasi-1 D antiferromagnet of 1 prevent the appearance of long range magnetic order until 2.9 K, suggesting good 1 D magnetism.