Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is stron...Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.展开更多
In shock tube experiments,the interaction between the reflected shock and boundary layer can induce shock bifurcation and weak ignition.The weak ignition can greatly affect the ignition delay time measurement in a sho...In shock tube experiments,the interaction between the reflected shock and boundary layer can induce shock bifurcation and weak ignition.The weak ignition can greatly affect the ignition delay time measurement in a shock tube experiment.In this work,two-dimensional simulations considering detailed chemistry and transport are conducted to investigate the shock bifurcation and non-uniform ignition behind a retlected shock.The objectives are to interpret the formation of shock bifurcation induced by the reflected shock and boundary layer interaction and to investigate the weak ignition and its transition to strong ignition for both hydrogen and dimethyl ether.It is found that the non-uniform reflection of the incident shock at the end wall produces a wedge-shaped oblique shock foot at the wall.The wedge-shaped structure results in strong interactions between reflected shock and boundary layer,which induces the shock bifurcation.It is demonstrated that the local high-temperature spots at the foot of the bifurcated shock is caused by viscous dissipation and pressure work.As the post-reflected shock temperature increases,the transition from weak ignition to strong ignition in a stoichiometric hydrogen/oxygen mixture is observed.The relative sensitivity of ignition delay time to the post-rellected shock temperature is introduced to characterize the appearance of weak ignition behind the reflected shock.Unlike in the hydrogen/oxygen mixture,weak ignition is not observed in the stoichiometric dimethyl-ether/oxygen mixture since it has a relatively longer ignition delay time and smaller relative sensitivity.展开更多
基金jointly supported by the NSF(Nos.41104069 and 41274124)the National 973 Project(No.2014CB239006)+1 种基金National Oil and Gas Project(Nos.2016ZX05014001and 2016ZX05002)the Tai Shan Science Foundation for The Excellent Youth Scholars
文摘Reflection full-waveform inversion (RFWI) updates the low- and high- wavenumber components, and yields more accurate initial models compared with conventional full-waveform inversion (FWI). However, there is strong nonlinearity in conventional RFWI because of the lack of low-frequency data and the complexity of the amplitude. The separation of phase and amplitude information makes RFWI more linear. Traditional phase-calculation methods face severe phase wrapping. To solve this problem, we propose a modified phase-calculation method that uses the phase-envelope data to obtain the pseudo phase information. Then, we establish a pseudophase-information-based objective function for RFWI, with the corresponding source and gradient terms. Numerical tests verify that the proposed calculation method using the phase-envelope data guarantees the stability and accuracy of the phase information and the convergence of the objective function. The application on a portion of the Sigsbee2A model and comparison with inversion results of the improved RFWI and conventional FWI methods verify that the pseudophase-based RFWI produces a highly accurate and efficient velocity model. Moreover, the proposed method is robust to noise and high frequency.
基金supported by the National Natural Science Foundation of China(Grant Nos.52006001,and 52176096).
文摘In shock tube experiments,the interaction between the reflected shock and boundary layer can induce shock bifurcation and weak ignition.The weak ignition can greatly affect the ignition delay time measurement in a shock tube experiment.In this work,two-dimensional simulations considering detailed chemistry and transport are conducted to investigate the shock bifurcation and non-uniform ignition behind a retlected shock.The objectives are to interpret the formation of shock bifurcation induced by the reflected shock and boundary layer interaction and to investigate the weak ignition and its transition to strong ignition for both hydrogen and dimethyl ether.It is found that the non-uniform reflection of the incident shock at the end wall produces a wedge-shaped oblique shock foot at the wall.The wedge-shaped structure results in strong interactions between reflected shock and boundary layer,which induces the shock bifurcation.It is demonstrated that the local high-temperature spots at the foot of the bifurcated shock is caused by viscous dissipation and pressure work.As the post-reflected shock temperature increases,the transition from weak ignition to strong ignition in a stoichiometric hydrogen/oxygen mixture is observed.The relative sensitivity of ignition delay time to the post-rellected shock temperature is introduced to characterize the appearance of weak ignition behind the reflected shock.Unlike in the hydrogen/oxygen mixture,weak ignition is not observed in the stoichiometric dimethyl-ether/oxygen mixture since it has a relatively longer ignition delay time and smaller relative sensitivity.