文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffra...文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffraction,RHEED)、原子力显微镜(atomic force microscope,AFM)进行表面形貌的表征;利用X射线衍射仪(X-ray diffraction,XRD)和X射线能谱仪(energy dispersive X-ray spectroscopy,EDS)对样品的晶相和化学组分进行分析筛样。结果表明,衬底温度为390℃时制备的Bi_2Se_3薄膜表面平整、成分接近理想配比、结晶质量较好。最后利用综合物性测量系统测量了最佳衬底温度制备的样品的电学性质,表明样品为n型拓扑绝缘体薄膜。展开更多
文摘文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffraction,RHEED)、原子力显微镜(atomic force microscope,AFM)进行表面形貌的表征;利用X射线衍射仪(X-ray diffraction,XRD)和X射线能谱仪(energy dispersive X-ray spectroscopy,EDS)对样品的晶相和化学组分进行分析筛样。结果表明,衬底温度为390℃时制备的Bi_2Se_3薄膜表面平整、成分接近理想配比、结晶质量较好。最后利用综合物性测量系统测量了最佳衬底温度制备的样品的电学性质,表明样品为n型拓扑绝缘体薄膜。