The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion...The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.展开更多
Liquid ternary Fe47.5Cu47.5Sn5 alloy displayed dual solidification mechanisms when it was undercooled by up to 329 K (0.19TL). Below a critical undercooling of about 196 K, it solidified just like a normal peritecti...Liquid ternary Fe47.5Cu47.5Sn5 alloy displayed dual solidification mechanisms when it was undercooled by up to 329 K (0.19TL). Below a critical undercooling of about 196 K, it solidified just like a normal peritectic alloy, even though metastable phase separation occurred to a microscopic extent. Once bulk undercooling exceeds 196 K, macroscopic segregation played a domi- nant role in solidification. In both cases, the solidification process was always characterized by two successive peritectic trans- formations: firstly primary yFe dendrites reacted with liquid phase to form (Cu) phase, and subsequently the (Cu) phase reacted with residual liquid phase to yield β-Cu5.6Sn intermetallic compound. The primary yFe dendrites achieved a maximum growth velocity of 400 mm/s and experienced a growth kinetics transition as a result of macrosegregation. Since the (Cu) phase was both the product phase of the first peritectic transformation and also the reactant phase for the second peritectic transformation, it appeared as two layers in solidification microstructures due to the microsegregation of Sn solute. The boundary continuity between the macroscopically separated Fe-rich and Cu-ricb zones was enhanced with the increase of undercooling.展开更多
The stability and oxygen reduction reaction (ORR) activity of the Pt-segregated surface in various Pt-M alloys (M: transition metals) are investigated through systematic DFT calculations on the thermodynamic (al...The stability and oxygen reduction reaction (ORR) activity of the Pt-segregated surface in various Pt-M alloys (M: transition metals) are investigated through systematic DFT calculations on the thermodynamic (alloy formation energy and Pt surface segregation energy), surface chemical property (oxygen binding energy) and electronic (d-band center) properties. Factors af- fecting these properties, such as the atomic radii and surface energy of M and the electronic ligand interaction between Pt and M are analyzed as a function of outmost d electron numbers of M. It is shown that the electronic ligand interaction plays de- termining role in the alloy formation energy of various Pt-M alloys; the formation of Pt-segregated surface in Pt-M alloys is faw)red when alloying metals have higher surface energy and smaller radii than Pt; the oxygen binding energy on the Pt-segregated surface in Pt-M alloys varies approximately linearly with the d-band center of surface Pt atoms; the lattice strain and electronic ligand effects are simply additive in Pt-M alloys; the stain effect in Pt-M alloys nearly linearly affects the d-band center of the Pt-segregated surface in Pt-M alloys; transition metals with less than 10 d electrons mostly exhibit electron ligand effects which result in downshift of the d-band center of the segregated surface Pt atoms, while those with ten d electrons exhibit electron ligand effect upshifting the d-band center of the segregated Pt atoms.展开更多
基金Project(2013CB036203)supported by the National Basic Research Program of ChinaProject(2013M530022)supported by China Postdoctoral Science Foundation+4 种基金Project(2013-K5-31)supported by Science and Technology Plan of Ministry of Housing and Urban-Rural Development of ChinaProject supported by High-level Scientific Research Foundation for the Introduction of Talent of Yangzhou University,ChinaProject supported by the Open Fund of the National Engineering Laboratory for High Speed Railway Construction,ChinaProject(IRT1296)supported by the Program for Changjiang Scholars and Innovative Research Team in University,ChinaProject(50908236)supported by the National Natural Science Foundation of China
文摘The vehicle-track-bridge(VTB)element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions.Based on the PEER NAG Strong Ground Motion Database,the spatial analysis model of a vehicle-bridge system was developed,the VTB element was derived to simulate the interaction of train and bridge,and the elasto-plastic seismic responses of the bridge were calculated.The calculation results show that girder and pier top displacement,and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes,and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading.The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base,which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve.The results show that there is an amplification of the vertical deflection in the girder's mid-span owing to the high vertical ground motion.In light of these findings,the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51101123 and 50971105)the Fundamental Research Fund of Northwestern Polytechnical University (GrantNo. JC201050)
文摘Liquid ternary Fe47.5Cu47.5Sn5 alloy displayed dual solidification mechanisms when it was undercooled by up to 329 K (0.19TL). Below a critical undercooling of about 196 K, it solidified just like a normal peritectic alloy, even though metastable phase separation occurred to a microscopic extent. Once bulk undercooling exceeds 196 K, macroscopic segregation played a domi- nant role in solidification. In both cases, the solidification process was always characterized by two successive peritectic trans- formations: firstly primary yFe dendrites reacted with liquid phase to form (Cu) phase, and subsequently the (Cu) phase reacted with residual liquid phase to yield β-Cu5.6Sn intermetallic compound. The primary yFe dendrites achieved a maximum growth velocity of 400 mm/s and experienced a growth kinetics transition as a result of macrosegregation. Since the (Cu) phase was both the product phase of the first peritectic transformation and also the reactant phase for the second peritectic transformation, it appeared as two layers in solidification microstructures due to the microsegregation of Sn solute. The boundary continuity between the macroscopically separated Fe-rich and Cu-ricb zones was enhanced with the increase of undercooling.
基金supported by the National Basic Research Program of China(2012CB932800)the National Natural Science Foundation of China(21303048)the Natural Science Foundation of Hunan Province(13JJ4101)
文摘The stability and oxygen reduction reaction (ORR) activity of the Pt-segregated surface in various Pt-M alloys (M: transition metals) are investigated through systematic DFT calculations on the thermodynamic (alloy formation energy and Pt surface segregation energy), surface chemical property (oxygen binding energy) and electronic (d-band center) properties. Factors af- fecting these properties, such as the atomic radii and surface energy of M and the electronic ligand interaction between Pt and M are analyzed as a function of outmost d electron numbers of M. It is shown that the electronic ligand interaction plays de- termining role in the alloy formation energy of various Pt-M alloys; the formation of Pt-segregated surface in Pt-M alloys is faw)red when alloying metals have higher surface energy and smaller radii than Pt; the oxygen binding energy on the Pt-segregated surface in Pt-M alloys varies approximately linearly with the d-band center of surface Pt atoms; the lattice strain and electronic ligand effects are simply additive in Pt-M alloys; the stain effect in Pt-M alloys nearly linearly affects the d-band center of the Pt-segregated surface in Pt-M alloys; transition metals with less than 10 d electrons mostly exhibit electron ligand effects which result in downshift of the d-band center of the segregated surface Pt atoms, while those with ten d electrons exhibit electron ligand effect upshifting the d-band center of the segregated Pt atoms.