The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical ...The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place-sometimes referred to as the standing wave reactor (SWR). TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 23sU and below), which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR) fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for re- processing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technolo- gy development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.展开更多
The adverse impact of chemical agriculture in the India on the soil, water, environment and human health (of consumers and farm families) exacerbates rural poverty, even as agriculture productivity remains low. Poor...The adverse impact of chemical agriculture in the India on the soil, water, environment and human health (of consumers and farm families) exacerbates rural poverty, even as agriculture productivity remains low. Poor families, especially women, are the most affected by the health and environmental risks that are brought on by chemical agriculture, and they are hardest hit by the deteriorating productivity. On the other hand, the solid waste management problem in India is increasingly being felt in rural and urban areas. In this study, the author proposes to practice ofvermicomposting as technology for both sustainable agriculture and solid waste management, using the Hydro Bioreactor with vegetable waste. This technique is studied in the present research work which is simple and potentially inexpensive. Experiments were conducted to determine the changes in the physicochemical parameters and the dominant species of microorganisms at different temperatures during entire process of vermicomposting were investigated. The vermicompost developed in the hydro bioreactor was found to have comparatively high value of nutrients which can serve as natural fertilizer. The hydro bioreactor vermicomposting has proved very effective and efficient for developing compost from vegetable waste.展开更多
文摘The traveling wave reactor (TWR) is a once-through reactor that uses in situ breeding to greatly reduce the need for enrichment and reprocessing. Breeding converts incoming subcritical reload fuel into new critical fuel, allowing a breed-burn wave to propagate. The concept works on the basis that breed-burn waves and the fuel move relative to one another. Thus either the fuel or the waves may move relative to the stationary observer. The most practical embodiments of the TWR involve moving the fuel while keeping the nuclear reactions in one place-sometimes referred to as the standing wave reactor (SWR). TWRs can operate with uranium reload fuels including totally depleted uranium, natural uranium, and low-enriched fuel (e.g., 5.5% 23sU and below), which ordinarily would not be critical in a fast spectrum. Spent light water reactor (LWR) fuel may also serve as TWR reload fuel. In each of these cases, very efficient fuel usage and significant reduction of waste volumes are achieved without the need for re- processing. The ultimate advantages of the TWR are realized when the reload fuel is depleted uranium, where after the startup period, no enrichment facilities are needed to sustain the first reactor and a chain of successor reactors. TerraPower's conceptual and engineering design and associated technolo- gy development activities have been underway since late 2006, with over 50 institutions working in a highly coordinated effort to place the first unit in operation by 2026. This paper summarizes the TWR technology: its development program, its progress, and an analysis of its social and economic benefits.
文摘The adverse impact of chemical agriculture in the India on the soil, water, environment and human health (of consumers and farm families) exacerbates rural poverty, even as agriculture productivity remains low. Poor families, especially women, are the most affected by the health and environmental risks that are brought on by chemical agriculture, and they are hardest hit by the deteriorating productivity. On the other hand, the solid waste management problem in India is increasingly being felt in rural and urban areas. In this study, the author proposes to practice ofvermicomposting as technology for both sustainable agriculture and solid waste management, using the Hydro Bioreactor with vegetable waste. This technique is studied in the present research work which is simple and potentially inexpensive. Experiments were conducted to determine the changes in the physicochemical parameters and the dominant species of microorganisms at different temperatures during entire process of vermicomposting were investigated. The vermicompost developed in the hydro bioreactor was found to have comparatively high value of nutrients which can serve as natural fertilizer. The hydro bioreactor vermicomposting has proved very effective and efficient for developing compost from vegetable waste.