A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convecti...A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.展开更多
To satisfy the needs of large-scale hydrogen combustion and explosion simulation,a method is presented to establish single-step chemistry model and transport model for fuel-air mixture.If the reaction formula for hydr...To satisfy the needs of large-scale hydrogen combustion and explosion simulation,a method is presented to establish single-step chemistry model and transport model for fuel-air mixture.If the reaction formula for hydrogen-air mixture is H2+0.5O2→H2O,the reaction rate model is ?? =1.13×10?5[H2][O2]exp(?46.37T0/T) mol(cm3 s)?1,and the transport coefficient model is ?=K/CP=ρD=7.0×10?5T 0.7 g(cm s)?1.By using current models and the reference model to simulate steady Zeldovich-von Neumann-Doering(ZND) wave and free-propagating laminar flame,it is found that the results are well agreeable.Additionally,deflagration-to-detonation transition in an obstructed channel was also simulated.The numerical results are also well consistent with the experimental results.These provide a reasonable proof for current method and new models.展开更多
A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By intr...A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.展开更多
System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response mod...System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response models of ship steering motion, including the first order linear, the first order nonlinear, the second order linear and the second order nonlinear models. Predictions of manoeuvres including trained samples by using the identified parameters are compared with the results of free-running model tests. It is discussed that the different four categories are consistent with each other both analytically and numerically. The generalization of the identified model is verified by predicting different untrained manoeuvres. The simulations and comparisons demonstrate the validity of the proposed method.展开更多
Coupling reaction usually refers to the direct C–C bond formation between two carbon fragments.Generally, cross-coupling reactions between nucleophiles and electrophiles have been extensively studied and become the c...Coupling reaction usually refers to the direct C–C bond formation between two carbon fragments.Generally, cross-coupling reactions between nucleophiles and electrophiles have been extensively studied and become the classic model for bond constructions. Another reaction model, bond formation from two nucleophiles through oxidative cross-coupling, has received more and more attention over the past few years. This paper will discuss the concept of oxidative cross-coupling and give an overview of its recent development.展开更多
We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Ho...We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.展开更多
This paper is concerned with the existence of entire solutions of some reaction-diffusion systems. We first consider Belousov-Zhabotinskii reaction model. Then we study a general model. Using the comparing argument an...This paper is concerned with the existence of entire solutions of some reaction-diffusion systems. We first consider Belousov-Zhabotinskii reaction model. Then we study a general model. Using the comparing argument and sub-super-solutions method, we obtain the existence of entire solutions which behave as two wavefronts coming from the both sides of x-axis, where an entire solution is meant by a classical solution defined for all space and time variables. At last, we give some examples to explain our results for the general models.展开更多
基金Supported by the National Natural Science Foundation of China(U1462206)
文摘A coupled system simulating both firebox and reactor is established to study the naphtha pyrolysis in an industrial tubular furnace.The firebox model is based on zone method including combustion,radiation,and convection to simulate heat transfer in the furnace.A two-dimensional recirculation model is proposed to estimate the flow field in furnace.The reactor model integrates the feedstock reconstruction model,an auto-generator of detail kinetic schemes,and the reactor simulation model to simulate the reaction process in the tubular coil.The coupled simulation result is compared with industrial process and shows agreement within short computation time.
基金supported by EU IIF-FP7 Project (Grant No. 909658)the National Natural Science Foundation of China (Grant No.50806071)the Fundamental Research Funds for the Central Universities of China
文摘To satisfy the needs of large-scale hydrogen combustion and explosion simulation,a method is presented to establish single-step chemistry model and transport model for fuel-air mixture.If the reaction formula for hydrogen-air mixture is H2+0.5O2→H2O,the reaction rate model is ?? =1.13×10?5[H2][O2]exp(?46.37T0/T) mol(cm3 s)?1,and the transport coefficient model is ?=K/CP=ρD=7.0×10?5T 0.7 g(cm s)?1.By using current models and the reference model to simulate steady Zeldovich-von Neumann-Doering(ZND) wave and free-propagating laminar flame,it is found that the results are well agreeable.Additionally,deflagration-to-detonation transition in an obstructed channel was also simulated.The numerical results are also well consistent with the experimental results.These provide a reasonable proof for current method and new models.
基金Project supported by the National Basic Research Program (973) of China (No 90505015)the National Natural Science Foundation of China (Nos 90816006 and 10732050)
文摘A new oxidation kinetics model is established for high-temperature oxidation. We assume that the interface reaction is fast enough and the oxidation rate is controlled by diffusion process at high temperature. By introducing the growth stress gradient we modify the classical oxidation parabolic law. The modified factor of the oxidation rate constant is a function of growth strain, environment oxygen concentration, and temperature. The modeling results show that the stress gradient effect on the oxidation rate cannot be ignored. Growth strain will dominate whether the stress gradient effect promotes or slows down the oxidation process. The stress gradient effect becomes weaker at higher temperature. This effect is amplified at higher concentrations of environmental oxygen. Applied mechanical loads do not affect the oxidation rate. This model is available for high temperature oxidation of metals and alloys.
基金the Special Research Fund for the Doctoral Program of Higher Education (No. 20050248037)the National Natural Science Foundation of China(No. 50779033)
文摘System identification is an effective way for modeling ship manoeuvring motion and ship manoeuvrability prediction. Support vector machine is proposed to identify the manoeuvring indices in four different response models of ship steering motion, including the first order linear, the first order nonlinear, the second order linear and the second order nonlinear models. Predictions of manoeuvres including trained samples by using the identified parameters are compared with the results of free-running model tests. It is discussed that the different four categories are consistent with each other both analytically and numerically. The generalization of the identified model is verified by predicting different untrained manoeuvres. The simulations and comparisons demonstrate the validity of the proposed method.
基金supported by the National Basic Research Program of China(2012CB725302)the National Natural Science Foundation of China(21390400,21272180,21302148)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China(20120141130002)the Ministry of Science and Technology of China(2012YQ120060)
文摘Coupling reaction usually refers to the direct C–C bond formation between two carbon fragments.Generally, cross-coupling reactions between nucleophiles and electrophiles have been extensively studied and become the classic model for bond constructions. Another reaction model, bond formation from two nucleophiles through oxidative cross-coupling, has received more and more attention over the past few years. This paper will discuss the concept of oxidative cross-coupling and give an overview of its recent development.
基金supported by National Natural Science Foundation of China(Grant No.11201380)the Fundamental Research Funds for the Central Universities(Grant No.XDJK2012B007)+2 种基金Doctor Fund of Southwest University(Grant No.SWU111021)Educational Fund of Southwest University(Grant No.2010JY053)National Research Foundation of Korea Grant funded by the Korean Government(Ministry of Education,Science and Technology)(Grant No.NRF-2011-357-C00006)
文摘We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.
文摘This paper is concerned with the existence of entire solutions of some reaction-diffusion systems. We first consider Belousov-Zhabotinskii reaction model. Then we study a general model. Using the comparing argument and sub-super-solutions method, we obtain the existence of entire solutions which behave as two wavefronts coming from the both sides of x-axis, where an entire solution is meant by a classical solution defined for all space and time variables. At last, we give some examples to explain our results for the general models.